
Subject: Re: Controls & classes design questions
Posted by mirek on Sun, 19 Aug 2007 09:51:16 GMT
View Forum Message <> Reply to Message

mrjt wrote on Sun, 19 August 2007 05:22Then I must be misunderstanding something. I would be
grateful if you could tell me why the following code works if virtual methods are non-moveable:
struct BaseClass
{
	BaseClass() { int1 = 1; }	
	
	int int1;
	virtual int 	GetInt() 		{ return int1; }
	virtual String 	GetString() 	{ return "A String"; }
};

struct DerivedClass : public BaseClass, public Moveable<DerivedClass>
{
	DerivedClass() { int2 = 99; }	
	
	int int2;
	virtual int 	GetInt() 		{ return int2; }
	virtual String 	GetString() 	{ return "This is a derived class"; }
};

GUI_APP_MAIN
{
	Vector<DerivedClass> v;
	
	v.Add(DerivedClass());
	v.Add(DerivedClass());
	
	for (int i = 0; i < v.GetCount(); i++)
		PromptOK(Format("Int: %d String: %s", v[i].GetInt(), v[i].GetString()));
}

James

Sure it does work - at least with GCC and MSC.

The problem is that C++ standard allows memcpy only for POD types. U++ extends this to
moveable types, but that is technically violating C++ standard - such thing is undefined by
standard.

Therefore we try to keep such extension as thin as possible. There is really not much practical
advantage to having types with vtable moveable and in the same time, it is not that much unlikely
that some compiler would implement virtual methods in a way that would not work with U++.

Page 1 of 1 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=2646&goto=11089#msg_11089
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=11089
https://www.ultimatepp.org/forums/index.php

