Subject: Re: 16 bits wchar
Posted by mirek on Wed, 03 Oct 2007 10:10:35 GMT

View Forum Message <> Reply to Message

cbpporter wrote on Wed, 03 October 2007 04:36luzr wrote on Wed, 03 October 2007 10:26Error
escaping in Stream:

The error escaping in GetUtf8 is impossible, as it returns only single int - you do not know you
have to escape until you read more than single character from the input - and then you need more
than one wchar to be returned...

It depends on what that int represents and what kind of error escaping is used. For Utf-8, there
are only a small number of characters that are invalid and they could be escaped to non-character
code-points or even to a small region of the Private Use Area (for example FFFOO-FFFFF). The
private user area has approximatively 130000 reserved code points which are guaranteed to not
appear in public Unicode data (they are reserved for private processing only, not data
interchange).

Ah, but that is not the problem - AFAIK.

The trouble is e.g. invalid 6 bytes sequence, which you detect at byte 6. In this case, you cannot
reasonable return anything escaped from Stream::GetUtf8. You would need more than 32-bit
value for any reasonable output.

BTW, private area is exactly what "real" Utf8 functions use, just the range is OXEEOQO - OXEEFF
(did not wanted to spoil the beginning of range and OXEExx nicely resonates with "Error Escape”

However, please check the fixed version Stream::GetUtf8():

int Stream::GetUtf8()

{

int code = Get();
if(code <= 0) {
LoadError();
return -1;

}

if(code < 0x80)
return code;

else

if(code < 0xCO0)
return -1;

else

if(code < OXEO) {
if(IsEof()) {
LoadError();
return -1,

}
return ((code - 0xCO0) << 6) + Get() - 0x80;

Page 1 of 3 ---- Generated from U++ Forum


https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=2017&goto=11944#msg_11944
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=11944
https://www.ultimatepp.org/forums/index.php

}

else

if(code < 0xFO) {
int cO = Get();
int c1 = Get();
if(cl <0){
LoadError();
return -1;

}
return ((code - OXEQ) << 12) + ((cO - 0x80) << 6) + c1 - 0x80;

}
else
if(code < OxF8) {
int cO = Get();
int cl = Get();
int c2 = Get();
if(c2 <0){
LoadError();
return -1;
}
return ((code - 0xf0) << 18) + ((cO - 0x80) << 12) + ((c1 - 0x80) << 6) + c2 - 0x80;
}
else
if(code < OXFC) {
int cO = Get();
int cl = Get();
int c2 = Get();
int c3 = Get();
if(c3 < 0) {
LoadError();
return -1;
}
return ((code - 0xF8) << 24) + ((c0 - 0x80) << 18) + ((c1 - 0x80) << 12) +
((c2 - 0x80) << 6) + c3 - 0x80;
}

else
if(code < OXFE) {
int cO = Get();
int cl = Get();
int c2 = Get();
int c3 = Get();
int c4 = Get();
if(c4 < 0) {
LoadError();
return -1;
}
return ((code - OXFC) << 30) + ((cO - 0x80) << 24) + ((c1 - 0x80) << 18) +
((c2 - 0x80) << 12) + ((c3 - 0x80) << 6) + c4 - 0x80;

Page 2 of 3 ---- Generated from U++ Forum


https://www.ultimatepp.org/forums/index.php

}

else {
LoadError();
return -1;

}

}

BTW, thinking further about UTF-8 -> UTF-16 surrogate conversion, | am afraid that it in fact can
cause some problems in the code.

The primary motivation for "Error Escape” is that when file that is not representable by UCS-2
wchars is loaded into the editor (e.g. IDE) or if it simply has UTF-8 errors, there are two
requirements:

- Parts of file with correct and representable UTF-8 encoding must be editable

- Invalid parts must not be damaged by loading/saving.

| am afraid that with real surrogate pairs in editor, editor logic can go bad, it really expects that
single wchar represents one code point. There would be visual artifacts, with Win32 interpretting

surrogate pairs correctly (while U++ considering them single characters).

What a nice bunch of problems to solve And we have not even started to consider REAL
problems

Mirek

Page 3 of 3 ---- Generated from U++ Forum


https://www.ultimatepp.org/forums/index.php

