Subject: Re: C++ FQA
Posted by unodgs on Wed, 07 Nov 2007 12:15:07 GMT

View Forum Message <> Reply to Message

Quote:

1. True module support.

No more including hundreds of kilobytes if not megabytes of header files in each compilation unit.
No more writing every ddecalration twice. Modules act like Java packages, can be fully qualified to
avoid name clashes and can be combined to create a library with different access levels. And
because each module is compiled only once, D is lightning fast. My entire project compiled from
scratch almost instantly, and if I only modified the content of a function or other miner detail, truly
instantly.

Yeah, | like it too but there is a paper about modules in new C++ too
http://www.open-std.org/jtcl/sc22/wg21/docs/papers/2006/n207 3.pdf . | do not know how much
similar (or not) they are to D modules but it seems to be a step in the right direction.

Quote:

2. A lot of built in features, like variable length array and hash maps, which combined with some
extra functions, can be used to create types like Vector or Map, but even more easy to use and
without templates. char[] and about 10 extra functions could make String and StringBuffer
obsolete.

True. But | remember that D-people wanted to have String class. | prefere it too even if bulit-in
char type is powerful and easy to use.

Quote:

3. Templates + mixins + static ifs are stronger than templates in C++ + preprocessor. | never used
them, because you can do in D a lot more without templates than in C++.

Yes, some D coders (like Don Clugston for example) proved they are much more powerful than
C++ ones.

Quote:

4. Optional (but defaulted to true) garbage collection.

As much as you could dislike the idea of garbage collection, memory management in C++ is a
nightmare, and from this point of view, even U++ which has a lot less such issues, is not able to
give such pain free management.

| prefer RAIl approach and U++ is a very good example that this really works. Frankly if you use
NTL or STL (and follow the RAIl way) there is a rare situation when you have to worry about
memory management. | don't know why this still is an issue.

D uses GC but fortunately it allows for deterministic destruction in "scope classes". At least in
theory Must check it.

| think new C++ should break compatibility and be more like D. | don't understand why it cannot be
since all current/old apps can be developed with old compilers. This way C++ will be fatter and
fatter (and more complicated) with each standard revision.

Page 1 of 1 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=12
https://www.ultimatepp.org/forums/index.php?t=rview&th=2873&goto=12523#msg_12523
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=12523
https://www.ultimatepp.org/forums/index.php

