
Subject: Re: Checking socket connection after send.
Posted by rylek on Wed, 20 Feb 2008 19:59:26 GMT
View Forum Message <> Reply to Message

Hello captainc!

I'm afraid the answer to your question is not altogether simple. Although it might sound arbitrary
and inexact, perhaps the most important auxiliary question is: "how certain do you want/need to
be that your request has been processed on the remote computer?"

That, of course, depends on the character of your application. In many situations it is quite
sufficient to know that the data has probably left your computer. Even this is not really simple;
Windows has large outgoing data buffers (although I think their size can be changed using some
setsockopt or perhaps ioctlsocket) so that you can place a lot of data in an output socket without
getting a write block even though the connection will break shortly and none of the data will
eventually leave the machine.

Now when you're writing a transaction-sensitive tool, like a phone-based credit card terminal
system, that's something completely different. There are a million evil things that can befall a
solitary packet floating around the cyberspace after being spat out of your machine's network
card. It can get lost on its way, it can get rejected by a server application that's just crashed, there
can be a power failure while the remote machine processes the packet etc. etc. If you don't want
spend the rest of your life paying losses to the bank using your system, you had better wait for an
acknowledgement response.

This is the sad truth of remote computation: while both machines are talking, you know
everything's fine. One machine stops talking, the other has no way (without restoring the
communication) to find out what part of communication since the last handshake has got through
the line and through the remote application.

There's a similar problem with disconnection: you can never be absolutely sure that the other side
has disconnected gracefully, because each side would have to wait for the other side's
confirmation and both machines would deadlock forever. The basic rule is that enough
bidirectional communication must have taken place to make sure on both sides that the potentially
ungraceful shutdown will not have serious negative effect on either side.

A somewhat stricter formulation: the communication protocol and its implementation should
always ensure that an ungraceful remote shutdown at any time doesn't endanger stability and
transaction data on either side.

Regards

Tomas

P.S. As concerns PeekAbort, this is supposed to check whether the remote machine has closed
the socket. The implementation technique is not very clean (if you know of a cleaner way, I'm
prepared to listen), it just tries to receive a single byte on the line. If the line has broken, the recv
function returns 0. However, when the connection stays alive, the recv reads the one byte which

Page 1 of 2 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=24
https://www.ultimatepp.org/forums/index.php?t=rview&th=3191&goto=14242#msg_14242
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=14242
https://www.ultimatepp.org/forums/index.php


has to be stored in the leftover data buffer, so that a repeating call to PeekAbort without actually
receiving anything (while the remote application is sending data) will cause unlimited growth of the
leftover data buffer possibly leading to application memory overflow.

Page 2 of 2 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

