Subject: "better" version of Iscale functions
Posted by mdelfede on Tue, 01 Apr 2008 21:10:55 GMT

View Forum Message <> Reply to Message

In file 'mathutils.cpp’ the Iscale...() functions use some floating point math, when assembly is
unavailable OR when it's not compatible with intel syntax (I.E. GCC and MinGW).

That makes it slow and not showing divide-by-0 errors when third argument is 0.

So, here an (IMHO) better version of such functions :

#include "Core.h"

Il iscale: computes x *y / z.

#ifdef flagGCC
#define _ USE_64BIT_MATH__
#endif

NAMESPACE_UPP

int iscale(int x, inty, int z)

{

#ifdef _ NOASSEMBLY___
#ifndef __ USE_64BIT_MATH__
return int(x * (double)y / z);
#else

int64_tres = x;

res *=vy;

res /= z;

return (int)res;

#endif

#else

__asm

{

mov eax, [X]
imul [y]

idiv [z]

}

#endif

}

/[iscalefloor: computes x *y / z, rounded towards -infty.

int iscalefloor(int x, int y, int z)

{

#ifdef NOASSEMBLY

#ifndef _ USE_64BIT_MATH__
return (int)ffloor(x * (double)y / z);

H#else

Page 1 of 3 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=472
https://www.ultimatepp.org/forums/index.php?t=rview&th=3337&goto=15129#msg_15129
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=15129
https://www.ultimatepp.org/forums/index.php

int64 _tres = Xx;

int64_t mulres =res *vy;
res = mulres / z;

if(res * z I= mulres)
res--;

return (int)res;

#endif

#else

__asm

{
mov eax, [X]
imul [y]
idiv [z]
and edx, edx
jge __1
dec eax
1

}
#endif

}

/I iscaleceil: computes x *y / z, rounded towards +infty.

int iscaleceil(int x, int 'y, int z)
{
#ifdef _ NOASSEMBLY_
#ifndef _ USE_64BIT_MATH__
return fceil(x * (double)y / z);
#else
int64_tres = x;
int64_t mulres =res *y;
res = mulres / z;
if(res * z 1= mulres)
res++;
return (int)res;
#endif
#else
__asm

{
mov eax, [X]
imul [y]
idiv 2]
and edx, edx
jle 1
inc eax
1

}
#endif

Page 2 of 3 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

BTW, we could completely drop the assembly code, as-is it's not portable between compilers with
greater integer width.

My version is also *not* portable on compilers with 64 bit wide integers, but can be made ok just
changing function prototype :

int32_tiscale(int32_t x, int32_ty, int32_t z)

Leaving so to the compiler the integer width check and warnings.

Attached here the patched 'mathutil.cpp’ (NO patched function prototype, as it'll require Core.h
patch too).

Ciao

Max

File Attachnents

1) mathutil.cpp, downl oaded 396 tines

Page 3 of 3 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=getfile&id=1122
https://www.ultimatepp.org/forums/index.php

