
Subject: Re: "better" version of Iscale functions
Posted by mdelfede on Sun, 06 Apr 2008 17:36:21 GMT
View Forum Message <> Reply to Message

luzr wrote on Sun, 06 April 2008 04:47mdelfede wrote on Wed, 02 April 2008 10:48
Back to Iscale, I don't know about modern processors that does have an hardware ftp and doesn't
have 32x32->64 bit mul and 64/32 ->32 bit div core instructions... but I can be wrong.
Yet, I don't remember if intel ones works just with unsigned or signed or both integers...
BTW, I noticed that my iscale needs to work with 32 bit result; if not it'll use full 64 bit math for the
multiply (in iscalefloor and iscaleceil) which can be slow.
I guess that using 32x32 multiply and 64/32 division, GCC translates it directly in DIV and MUL,
but I've not checked yet.

Well, this is what MSC does seem to do to divide these numbers:

0041A920 push edi
0041A921 push esi
0041A922 push ebx
0041A923 xor edi,edi
0041A925 mov eax,[esp+0x14]
0041A929 or eax,eax
0041A92B jnl 0x41a941
0041A92D inc edi
0041A92E mov edx,[esp+0x10]
0041A932 neg eax
0041A934 neg edx
0041A936 sbb eax,byte +0x0
0041A939 mov [esp+0x14],eax
0041A93D mov [esp+0x10],edx
0041A941 mov eax,[esp+0x1c]
0041A945 or eax,eax
0041A947 jnl 0x41a95d
0041A949 inc edi
0041A94A mov edx,[esp+0x18]
0041A94E neg eax
0041A950 neg edx
0041A952 sbb eax,byte +0x0
0041A955 mov [esp+0x1c],eax
0041A959 mov [esp+0x18],edx
0041A95D or eax,eax
0041A95F jnz 0x41a979
0041A961 mov ecx,[esp+0x18]
0041A965 mov eax,[esp+0x14]
0041A969 xor edx,edx
0041A96B div ecx
0041A96D mov ebx,eax

Page 1 of 2 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=472
https://www.ultimatepp.org/forums/index.php?t=rview&th=3337&goto=15166#msg_15166
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=15166
https://www.ultimatepp.org/forums/index.php

0041A96F mov eax,[esp+0x10]
0041A973 div ecx
0041A975 mov edx,ebx
0041A977 jmp short 0x41a9ba
0041A979 mov ebx,eax
0041A97B mov ecx,[esp+0x18]
0041A97F mov edx,[esp+0x14]
0041A983 mov eax,[esp+0x10]
0041A987 shr ebx,1
0041A989 rcr ecx,1
0041A98B shr edx,1
0041A98D rcr eax,1
0041A98F or ebx,ebx
0041A991 jnz 0x41a987
0041A993 div ecx
0041A995 mov esi,eax
0041A997 mul dword [esp+0x1c]
0041A99B mov ecx,eax
0041A99D mov eax,[esp+0x18]
0041A9A1 mul esi
0041A9A3 add edx,ecx
0041A9A5 jc 0x41a9b5
0041A9A7 cmp edx,[esp+0x14]
0041A9AB ja 0x41a9b5
0041A9AD jc 0x41a9b6
0041A9AF cmp eax,[esp+0x10]
0041A9B3 jna 0x41a9b6
0041A9B5 dec esi
0041A9B6 xor edx,edx
0041A9B8 mov eax,esi
0041A9BA dec edi
0041A9BB jnz 0x41a9c4
0041A9BD neg edx
0041A9BF neg eax
0041A9C1 sbb edx,byte +0x0
0041A9C4 pop ebx
0041A9C5 pop esi
0041A9C6 pop edi
0041A9C7 ret 0x10

I would say we should better learn GCC assembly syntax

Mirek

Wow, that's what I call "optimizing compiler".....

Max

Page 2 of 2 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

