
Subject: Re: Which is the biggest drawback of U++ "unpopuliarity"?
Posted by mirek on Sat, 26 Apr 2008 06:11:39 GMT
View Forum Message <> Reply to Message

tvanriper wrote on Fri, 25 April 2008 20:36
If I have it right, your primary concern with std:: involves its relatively terrible performance,

Well, not really. If am to put it in a very simple way, the main problem with std:: is that it makes
you wish the C++ had garbage collector....

Quote:
If that's the concern, someone could potentially help you find a way to achieve the same
performance you currently get with NTL, while using a more std::-like interface.

Well, what would be that? Something like these macros at the end of Core/topt.h?

// STL compatibility hacks

#define STL_INDEX_COMPATIBILITY(C) \
	typedef T value_type; \
	typedef ConstIterator const_iterator; \
	typedef const T& const_reference; \
	typedef int size_type; \
	typedef int difference_type; \
	const_iterator begin() const { return B::Begin(); } \
	const_iterator end() const { return B::End(); } \
	void clear() { B::Clear(); } \
	size_type size() { return B::GetCount(); } \

#define STL_BI_COMPATIBILITY(C) \
	typedef T value_type; \
	typedef ConstIterator const_iterator; \
	typedef const T& const_reference; \
	typedef int size_type; \
	typedef int difference_type; \
	const_iterator begin() const { return Begin(); } \
	const_iterator end() const { return End(); } \
	void clear() { Clear(); } \
	size_type size() { return GetCount(); } \
	typedef Iterator iterator; \
	typedef T& reference; \
	iterator begin() { return Begin(); } \
	iterator end() { return End(); } \

#define STL_MAP_COMPATIBILITY(C) \

Page 1 of 3 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=94&goto=15488#msg_15488
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=15488
https://www.ultimatepp.org/forums/index.php

	typedef T value_type; \
	typedef ConstIterator const_iterator; \
	typedef const T& const_reference; \
	typedef int size_type; \
	typedef int difference_type; \
	const_iterator begin() const { return B::Begin(); } \
	const_iterator end() const { return B::End(); } \
	void clear() { B::Clear(); } \
	size_type size() { return B::GetCount(); } \
	typedef Iterator iterator; \
	typedef T& reference; \
	iterator begin() { return B::Begin(); } \
	iterator end() { return B::End(); } \

#define STL_VECTOR_COMPATIBILITY(C) \
	typedef T value_type; \
	typedef ConstIterator const_iterator; \
	typedef const T& const_reference; \
	typedef int size_type; \
	typedef int difference_type; \
	const_iterator begin() const { return Begin(); } \
	const_iterator end() const { return End(); } \
	void clear() { Clear(); } \
	size_type size() { return GetCount(); } \
	typedef Iterator iterator; \
	typedef T& reference; \
	iterator begin() { return Begin(); } \
	iterator end() { return End(); } \
	reference front() { return (*this)[0]; } \
	const_reference front() const { return (*this)[0]; } \
	reference back() { return Top(); } \
	const_reference back() const { return Top(); } \
	void push_back(const T& x) { Add(x); } \
	void pop_back() { Drop(); }

Quote:
I could, of course, be mistaken. I'm not completely clear on why you feel these are so
incompatible... as perhaps I'm not 100% clear on your design goals, or I'm ignorant of the
fundamental problem you see in std::.

The real trouble starts with the fact that you cannot use std::string as map keys. You cannot use
any concrete class defined in std:: as element of any Vector flavor U++ container.

So far, the main "incompatibility complaint" was that "U++ guys seem to define their own
containers and string". This is not easy to fix

Page 2 of 3 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

I've read and re-read [url=http://www.ultimatepp.org/www$uppweb$vsstd$en-us.html]this
page[/url], but I still can't quite see how U++ and std:: can be so incompatible that there's no hope
of improving the std::-style system to the point of matching U++ performance.

Ah, but you could fix std::. But it is not likely to happen.

Moreover, adopting all U++ tricks into std:: would change its semantics and break existing code.

I only pose this idea because it feels to me like you and boost have similar goals. I could, of
course, be wrong. I know, for example, that boost has less of an emphasis on performance and
more of an emphasis on their idea of 'correctness', so you may differ significantly there. (This is
certainly not to say you have no concern for 'correctness', but that you may have a slightly
different idea of what is 'correct' from boost).

Oh, I have a very strong concern for 'correctness' - to the degree that I often rather break existing
code by fixing some "incorrectness" in U++ Core.

Also, please, do not think I am not aware about boost or that I think these people are stupid. Of
course not, boost is a very good effort and the code is pretty good.

I just feel U++ is not a good fit there. It is almost like suggesting boost to adopt Java

BTW: I mostly care about "optimality" with U++. If I would care about "popularity" more, I would
certainly use another path and boost would be the part of it.

Quote:
Perhaps someone could submit an article to Dr. Dobb's Journal showcasing the use of
Ultimate++; that's a fairly popular magazine, at least here in the United States (the CUJ folded to
Dr. Dobb's a few years ago, sadly, or I would have recommended it instead).

I guess that would be much better idea:)

Mirek

Page 3 of 3 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

