
Subject: Re: sMutexLock implementation
Posted by mirek on Fri, 30 May 2008 17:11:41 GMT
View Forum Message <> Reply to Message

hojtsy wrote on Thu, 22 May 2008 04:38In Mt.cpp there is

Mutex& sMutexLock()
{
	static Mutex *section;
	if(!section) {
		static byte b[sizeof(Mutex)];
		section = new(b) Mutex;
	}
	return *section;
}
How is this different from the simpler

Mutex& sMutexLock()
{
	static Mutex m;
	return m;
}
In both cases the Mutex constructor will be called when the function is first called. In both cases
the function needs external protection from MT race conditions.

On a side note, this function is not on the interface (Mt.h), why not make it file static in Mt.cpp to
avoid name clashes?

I think you are basically right. This was attempt to make more sure that initialization really
happens and there is not catch, because external protection is not possible there.... as this is a
mutex used to protect synchronization of other mutexes..

So the whole thing is meant to be run before second thread starts (and it is called in several
places to ensure this).

I guess it is still better this way, as you never know what really happens in "static magic".

I agree about "static" though.

Mirek

Mirek

Page 1 of 1 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=3488&goto=16178#msg_16178
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=16178
https://www.ultimatepp.org/forums/index.php

