
Subject: Re: Thoughts about alternative approach to multithreading
Posted by Mindtraveller on Thu, 16 Oct 2008 11:48:55 GMT
View Forum Message <> Reply to Message

For some time I was thinking about Mirek`s question on CoWork. And couldn`t find how to apply
queue approach to Reference/CoWork example natively. The only way I think of is QueueCoWork
as pool manager for QueueThread objects which decides which Thread should execute next
action depending on their business (i.e. queue lengths). On highest hierarchy level QueueCoWork
is received PaintLines message from main thread`s Paint. This event executes main class
callback function DoRepaint which manages pooling of low-level callbacks painting the lines. IMO,
looks quite ugly:

void QueueCoWork::Manage(Callback1 &cb)
{
 int mostFreeThread = -1;
 //find most free (unbusy) Thread

 queueThreads[mostFreeThread] << cb;
}

void QueueCoWork::ManageTypical(Callback1 &cb)
{
 //simply rotate through threads to average tasks count
 lastUsedThread = (++lastUsedThread) % queueThreads.GetCount();

 queueThreads[lastUsedThread] << cb;
}

//--
void MainWindow::OnPaint
{
 queueCoWork << THISBACK(PaintLines);
}

void MainWindow::PaintLines()
{
 for (int y=0; y<height; ++y)
 queueCoWork.ManageTypical(THISBACK1(PaintLine, y));
}
void MainWindow::PaintLine(int y)
{
 //paint the y-th line
}

Page 1 of 1 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=441
https://www.ultimatepp.org/forums/index.php?t=rview&th=3919&goto=18682#msg_18682
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=18682
https://www.ultimatepp.org/forums/index.php

