
Subject: Re: Thoughts about alternative approach to multithreading
Posted by Mindtraveller on Mon, 17 Nov 2008 15:41:57 GMT
View Forum Message <> Reply to Message

Mirek, thank you for this important notice.

I keep working on "alternative" threading model and have some news. The thing I work on is
making posting callback to queue as quick as possible.
Let`s remind previous result: plain function call took ~600 msecs of averaged execution time. If
you create callback with arguments, execute it and destroy inside the cycle:
		for (...)
		{
			Callback cb = callback2(&tc, &TestClass::func, 100,500);
			cb();
		}
you get averaged execution time ~780 msecs.

To make comparison more fair, I emulate adding callback to queue, executing it and then
removing it from queue:
	BiVector<Callback> cbv;
	cbv.Reserve(100);
		for (...)
		{
			cbv.AddTail(callback2(&tc, &TestClass::func, 100,500));
			cbv.Head().Execute();
			cbv.DropHead();
}
Testing this code gave execution time of ~820 msecs.

OK, what does make this difference between plain call and posting a callback? 1) Yes,
creating/destroying of Atomic member inside callback. 2) Creation of callback object itself along
with it`s internal member with virtual functions and more. Also we must keep in mind that thread
will have very limited number of public callback types (as a rule). Not hundreds. Most likely
something about 10 or even smaller.
What if I avoid using complex Callback object and use something simpler instead? What if I have
a queue for each callback type where only arguments are stored?
It took me a number of days of thinking and a pair of dirty tricks to do it. Finally I came to
something like quick queued class prototype:
class AThreaded
{
public:
	AThreaded()
	{
		args.SetCount(0xFF+1); //yes, simple array+"hash" instead of Index. that is because Index`
elements are constant
	}
	
	template<class OBJECT, class P1, class P2>

Page 1 of 3 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=441
https://www.ultimatepp.org/forums/index.php?t=rview&th=3919&goto=19181#msg_19181
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=19181
https://www.ultimatepp.org/forums/index.php

	void RequestAction(void (OBJECT::*m)(P1,P2), const P1 &p1, const P2 &p2)
	{
		typedef void (OBJECT::*Func)(P1,P2);
		struct Args : public Moveable<Args>
		{
			P1 p1;
			P2 p2;
		};

		//using method pointer as hash value. notice that method`s pointer size may be >= plain (void *)
		int methodPtrSize = sizeof(m) / sizeof(unsigned);
		unsigned *cur = (unsigned *) (&m);
		unsigned hashV = 0;
		for (int i=0; i<methodPtrSize; ++i, ++cur) hashV+=*cur;
		hashV &= 0xFF;
		
		int argsI = hashV;//args[hashV];
		if (args[argsI].IsEmpty())
		{
			//creating arguments queue for new callback
			Any aa;
			aa.Create< BiVector<Args> >();
			args[hashV] = aa;
			args[argsI].Get< BiVector<Args> >().Reserve(100);
		}
		
		Args newArgs;
		newArgs.p1 = p1;
		newArgs.p2 = p2;
		
		//just emulating add+execute+drop
		BiVector<Args> &curArgsQueue = args[argsI].Get< BiVector<Args> >();
		curArgsQueue.AddTail(newArgs);
		Args &curArgs = curArgsQueue.Head();
		(((OBJECT *) this)->*m)(curArgs.p1, curArgs.p2);
		curArgsQueue.DropHead();
	}
		
protected:
private:
	Array<Any> args;
};
And execution time is... ~640 msecs. This is almost as fast as plain function call which took 600
msecs instead of 840 msecs while using classic U++ callbacks.
More of that, posting callback looks rather nice for user:
class TestClass : public AThreaded {...};
TestClass tc;

Page 2 of 3 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

tc.RequestAction(&TestClass::func, 100, 500);

I would appreciate any feedback, particularly comments on potential problems with this code.

Investigation on "alternative" threading model continues.

Page 3 of 3 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

