Subject: Re: Thoughts about alternative approach to multithreading
Posted by Mindtraveller on Mon, 17 Nov 2008 15:41:57 GMT

View Forum Message <> Reply to Message

Mirek, thank you for this important notice.

| keep working on "alternative" threading model and have some news. The thing | work on is
making posting callback to queue as quick as possible.
Let’s remind previous result: plain function call took ~600 msecs of averaged execution time. If
you create callback with arguments, execute it and destroy inside the cycle:
for (...)
{
Callback cb = callback2(&tc, &TestClass::func, 100,500);
cb();
}

you get averaged execution time ~780 msecs.

To make comparison more fair, | emulate adding callback to queue, executing it and then
removing it from queue:
BiVector<Callback> cbv;
cbv.Reserve(100);
for (...)
{
cbv.AddTail(callback2(&tc, &TestClass::func, 100,500));
cbv.Head().Execute();
cbv.DropHead();
}

Testing this code gave execution time of ~820 msecs.

OK, what does make this difference between plain call and posting a callback? 1) Yes,
creating/destroying of Atomic member inside callback. 2) Creation of callback object itself along
with it's internal member with virtual functions and more. Also we must keep in mind that thread
will have very limited number of public callback types (as a rule). Not hundreds. Most likely
something about 10 or even smaller.
What if | avoid using complex Callback object and use something simpler instead? What if | have
a queue for each callback type where only arguments are stored?
It took me a number of days of thinking and a pair of dirty tricks to do it. Finally | came to
something like quick queued class prototype:
class AThreaded
{
public:

AThreaded()

{

args.SetCount(OxFF+1); //yes, simple array+"hash" instead of Index. that is because Index’
elements are constant

}

template<class OBJECT, class P1, class P2>

Page 1 of 3 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=441
https://www.ultimatepp.org/forums/index.php?t=rview&th=3919&goto=19181#msg_19181
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=19181
https://www.ultimatepp.org/forums/index.php

void RequestAction(void (OBJECT::*m)(P1,P2), const P1 &pl, const P2 &p2)
{typedef void (OBJECT::*Func)(P1,P2);
struct Args : public Moveable<Args>
{
P1 p1;
P2 p2;
I3

/lusing method pointer as hash value. notice that method's pointer size may be >= plain (void *)
int methodPtrSize = sizeof(m) / sizeof(unsigned);

unsigned *cur = (unsigned *) (&m);

unsigned hashV = 0;

for (int i=0; i<methodPtrSize; ++i, ++cur) hashV+=*cur;

hashV &= OxFF;

int argsl = hashV;//args[hashV];

if (args[argsl].IsEmpty())

{

/lcreating arguments queue for new callback

Any aa;

aa.Create< BiVector<Args> >();

args[hashV] = aa;

args[argsl].Get< BiVector<Args> >().Reserve(100);
}

Args newArgs;
newArgs.pl = pl;
newArgs.p2 = p2;

/ljust emulating add+execute+drop

BiVector<Args> &curArgsQueue = args[argsl].Get< BiVector<Args> >();
curArgsQueue.AddTail(newArgs);

Args &curArgs = curArgsQueue.Head();

(((OBJECT *) this)->*m)(curArgs.pl, curArgs.p2);
curArgsQueue.DropHead();

}

protected:

private:

Array<Any> args;

3

And execution time is... ~640 msecs. This is almost as fast as plain function call which took 600
msecs instead of 840 msecs while using classic U++ callbacks.

More of that, posting callback looks rather nice for user:

class TestClass : public AThreaded {...};

TestClass tc;

Page 2 of 3 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

tc.RequestAction(&TestClass::func, 100, 500);

| would appreciate any feedback, particularly comments on potential problems with this code.

Investigation on "alternative" threading model continues.

Page 3 of 3 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php

