Subject: Re: PR!
Posted by cbpporter on Mon, 23 Mar 2009 09:21:10 GMT

View Forum Message <> Reply to Message

| think we should build on what we have.

1. Logo should remain the same. It's not like we are changing anything in the framework, we are
just trying to promote it. But the style of the logo is old. Modern logo's have gradients and realistic
shading. Check out what Oxygen/KDE did with their icons, or how Vista updated the icon for
Notepad from the Windows 95 look.

| think | saw some updated icons in an old thread somewhere on the forum, but | can't find it
again.

Touching up the logo should be no big deal. If one of us can't do it, a struggling young artist will do
a great job for a small amount of money.

2. The forum should stay. It is both an adequate platform of communication and an archive of a lot
of valuable information. Going through it and archiving some old threads would be in order, but
that is a monumental task and | don't think anybody has the resources or patience to do it.

3. We do need some great introductory articles which must address the most important aspects
that differentiate U++ from other frameworks, like:

- why do we re implement STL? Couldn't we have developed a compromise solution, using STL
as much as possible and adding just a few containers, like Movable enabled ones? Couldn't we
have used STL naming conventions and iterators? | know STL containers don't have a virtual
destructor, but that doesn't mean you can't inherit and modify behavior. Sure, there are some
restrictions, but we could have retrofitted some standard containers with some useful methods.

- why do we use default pick semantics? Won't it cause a lot of problems? Big learning curve and
hidden bugs? Design pattern books say that this is a bad practice. And it is in a world of default
copy construction, so we need to highlight that the framework is more or less capable of handling
pick semantics without issues because if was designed that way. This issue is going to be hard to
"market". I've been using U++ for quite some time now, and while | think that copy constructing
should not be enforced on a STL level, we should have left = as default copy construct and only
use pick with and explicit picking method/operator.

- why don't we have a couple of libs and some .h. Everybody does that. "Source based
distribution? Why? | don't want to recompile everything. What is this, the kernel? You're just lazy!".
We need to explain the advantages of U++ modularity. Also BLITZ must be handled with care. It is
not well received in a business environment and managers tend to avoid it.

- why do we allocate everything on the stack? This makes a lot of common pattern harder to use.
U++ doesn't play nice with things like abstract factories if we follow our style, and if we adopt their
style, we loose a lot of U++'s advantages and simplicity.

- leaving aside NTL, why do we implement a new set of widgets? We could have used one of the
existing toolkits and expand upon it. Even better question: leaving aside details and language
differences, what can U++ widgets do that Gtk ones can't? Gtk is used everywhere, and GtkMM
should be a better supported equivalent of U++, right? Such questions will arise, and different
environments will have different levels of resistance. For Windows development, most people |
know that do C++ would ask: "Another set of widgets? What version of MFC is it built upon? |

Page 1 of 2 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=475
https://www.ultimatepp.org/forums/index.php?t=rview&th=4251&goto=20552#msg_20552
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=20552
https://www.ultimatepp.org/forums/index.php

can't be better than ToolKit Pro."

And the list could go on and on. What I'm trying to say is that U++ is different, and we need to
show this and also why it is good thing. If we create false expectations, we won't get anything
more that a temporary interest.

Page 2 of 2 ---- Generated from Ut++ Forum

https://www.ultimatepp.org/forums/index.php

