
Subject: Re: MSC problems: pick_ != const
Posted by mirek on Sun, 19 Apr 2009 22:25:22 GMT
View Forum Message <> Reply to Message

Mindtraveller wrote on Sun, 19 April 2009 17:07For example, this code causes error:
struct AOp : Moveable<AOp>
{
	One<AOpHardware> hardware;
};

class AOps : public Vector<AOp>
{
public:
	void Xmlize(XmlIO xml) {XmlizeContainer(xml, "aop", *this);}
};
This is caused by the fact that pick != const in MSC compiler. And somewhere within U++ Core
we have copying of Vector member with const argument (not pick_!):
//Core/Topt.h @ 135
template <class T>
inline void DeepCopyConstruct(void *p, const T& x) {
	::new(p) T(x);
}

This is strange. Class One supports pick behaviour, so accroding to U++ principles this code
should compile without errors.
Am I right?

Yes and no.

pick definitely is not equal to semantics of const. (const guarantees no change).

That, after all, is why there is #define pick_...

Anyway, we are sort of at odds with C++ standard here as we would like to have pick_
constructors used when returning containers from functions. According to C++ standard, this is
only possible if they are const (the critical rule is "nonconst references cannot be bound to
temporaries").

Surprisingly, MSC++ has relaxed rules (you can call it a bug) w.r.t. to this, probably because some
old MFC code was breaking the rule too. As we know when we are compiling with MSC, I decided
make #define pick_ empty in that case; it better matches wanted pick_ semantics and is able to
catch a bug here are there, like if you are trying to use DeepCopyConstruct on pick type.

Mirek

Page 1 of 1 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=4336&goto=20932#msg_20932
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=20932
https://www.ultimatepp.org/forums/index.php

