
Subject: Re: New packages announcement
Posted by cbpporter on Mon, 15 Jun 2009 12:29:43 GMT
View Forum Message <> Reply to Message

If I extend C I will break working code. If I extend C++ I will break working code again. This is not
an issue, it is a design choice. As I said C is not a good practical language and making it
backward compatible would "doom" it from the start. And I don't really want to extend it, rather
than replace all unsafe features with safe ones, basically creating a new systems programming
language which is as safe and clear Java and has the performance of C, but with slightly more
memory consumption (arrays have sizes). The memory consumption of 8 bytes per array is not

the length along the pointer so you can optimize by structure size. Also, our build machines have

And believe me, I have tried every single programming language that has a fair user share and
about 20 GUI toolkits before I have stumbled upon U++. U++ is the perfect GUI toolkit for me, and
C++ is the perfect language (but with extremely archaic technology behind it). When I started
using U++ I was doing desktop software, but I'm not doing that anymore.

But one cannot choose his programming language. In the domain I work (industrial printers) there
are only two choices: C and C++. I'm researching my language proposal to see if one can merge
the ease of use of C++ RAII semantics for easy resource management with a classic non OOP
based way of working like in C, but in the meantime making C extremely safe. 

And NULL terminated strings are not fast. You need to check the whole string to determine the
length. I understand that a lot of operations on strings are serial by nature and this disadvantage
disappears, but there are also a lot of operations which are not serial. Take for example strings
which have a known length which is padded with zeros up to the platforms integer size (32/64
bits). You can write an optimized strcpy which will use 32 bit moves and will never have to
compare against zero vs. 4 times as many 8bit moves and comparing to zero. Which do you think
is faster? Or 64 bit moves vs. 8 times as many 8 bit moves with null checking? Actually U++ does
this for short strings. Or string concatenation, reverse find, binary search, etc. They all are more
efficient when the length of the string is known, and since a string is an array, these algorithms will
work on all arrays.

Page 1 of 1 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=475
https://www.ultimatepp.org/forums/index.php?t=rview&th=4477&goto=22047#msg_22047
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=22047
https://www.ultimatepp.org/forums/index.php

