Subject: "Alternative Multithreading” revisited
Posted by Mindtraveller on Mon, 29 Jun 2009 19:00:45 GMT

View Forum Message <> Reply to Message

Finally I have finished some large U++ application and | have a number of new things tested while
writing and debugging it. Currently each of them at release state and | guarantee (almost?) perfect
work, although it would be great to have any feedback.

I"d like to introduce first of them here. It is alternative approach to multithreading which was
discussed some months ago in this forum. What does it do? Actually it saves lot of your time and
eliminates headache of synchronization objects.

Application mentioned above had about 5 threads which were interacting rather actively with each
other. And during the months of debugging | didn't have ANY problems with threads
synchronization or something like locks or conflicts. Imagine: 5 threads and no problems!

Of course, this solution has it's boundaries. It shouldn't be applied in cases where you have
extremely active interaction between threads (actually, more than 300-400 inter-threading
"messages"/calls per second on my AMD 2 GHz starts to make difference). In any other cases it
is OK to use it.

If you are still interested, let's discuss how to use proposed solution. First of all, it introduces a
class/threading model:

Each thread is an object of CallbackThread class descendant

Main (GUI) thread is described as the object-descendant of CallbackQueue class (in non-GUI
applications you still may have it)

There are NO public members (it is really OOP-style) and any interaction between threads are
made through public member functions

Each thread (including main) has it's internal queue of "callbacks" which are executed
consequently in FIFO-order. All the functions are executed in object's thread.

That is why you don't need synchronization objects. Threads interact with some public member
functions (delegates/messages) only and they "know" nothing more about each other. So, thread's
private functions are executed (handled) in it's own thread and don't need to do anything with
synchronization.

I've added two packages to see and test it. First, MtAlt is the main class to use alternative
multithreading. MtAltExamplel is the simple example of it's usage.

Any questions or suggestions are welcome.

File Attachnents

1) MAIt.zip, downl oaded 689 tines

|'d like to see alternative-MI in the Bazaar (total
votes: 13)

Page 1 of 2 ---- Generated from U++ Forum


https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=441
https://www.ultimatepp.org/forums/index.php?t=rview&th=4515&goto=22280#msg_22280
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=22280
https://www.ultimatepp.org/forums/index.php?t=getfile&id=1819
https://www.ultimatepp.org/forums/index.php

—1/(8%)

Page 2 of 2 ---- Cenerated from U++ Forum


https://www.ultimatepp.org/forums/index.php

