
Subject: suggestion: code-parsing plugins
Posted by piotr5 on Mon, 13 Jul 2009 21:58:17 GMT
View Forum Message <> Reply to Message

Assist++ and syntax-highlighting both need to parse the code and sort of "understand" what is
written. U++ adds to the standard c++ directives several new ones (i.e. uint32 and such) and they
all happen to be coloured in a special way. my idea is that this particular colouring should be
handled in a separate lib such that removing that lib from theide would also remove the
syntax-highlighting for those. and I believe the same lib should also understand that
CONSOLE_APP_MAIN macro is a function-definition for main(...) and whatever other macros
U++ can offer, and this info should be available for Assist++. I imagine a very simplicistic
plugin-system, where during compilation some script does just collect the names of all plugins into
a dynamically created header-file and makes sure they get initialized at startup. i.e. assist++
would then just pass on interpretation to each plugin by calling the addresses stored in some
container, which got filled during plugin-initialization. for example highlighting wouldn't need to use
call-backs, the same for simple macros in Assist++. so it could still be a quite fast parsing. on the
other hand a project which doesn't include Core could omit u++-plugin initialization and thereby
speed up parsing.

what do you think? of course, as far as I can see no custom scripted file-creation seems to be
implemented in theIde yet, so I cannot imagine how the plugin could get detected without
manually altering the sources (beyond "ide.upp"). I call it plugin because I expect that merely
adding the individual plugin-package to theide should be sufficient for it getting used. dynamically
loaded plugins could also be a possibility, but statically linked plugins have the advantage that
they get re-compiled everytime along with theide, and therefore don't require
backwards-compatible interface. the idea is that users who never need u++ Core package can
simply remove the overhead to make theide slightly smaller. and in general I would like to have
theide more modularized such that unneeded features could just be excluded from compilation in
future. but for now I expect that through such a plugin-system people could contribute their own
special assist++ parser for certain libraries. and templates would also get a new use (especially
since there would now be a code-parsing plugin-template). for example an stl-plugin could
colour-code stl stuff, and it could even be kept up-to-date such that assist can understand
whatever has been used in some stl-implementation...

oh, and I think that one needs to keep in mind that the parser of the configuration-file should take
into account that not all plugins are loaded and thereby ignore the unused options. or maybe even
name the config-file according to the loaded plugins resp. store plugin-related config into separate
config-files.

Page 1 of 1 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=32
https://www.ultimatepp.org/forums/index.php?t=rview&th=4534&goto=22424#msg_22424
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=22424
https://www.ultimatepp.org/forums/index.php

