Subject: creating DLLs HOWTO ?7?
Posted by kohaitOO on Thu, 19 Nov 2009 10:56:12 GMT

View Forum Message <> Reply to Message

Hi there

i was searching the forum up and down for some kind of practical info on how to build a DLL
project, which i.e exports some classes (same as you can do with visual studio) with the current
U++ releases. And that using both MINGW and MSC9 (current win SDK proposed during install).
There is nol/little quite usable info around this issue. So this is a try to put together what i found out
so far, this definitely should be xtended and maybe put somewhere in docs..

So far my steps taken are the following:

Asume you have an u++ application, that wants to loadtime bind to a dll, exorting some
functionality classes, also created in u++ (the fact that is is difficult and why, like mirek stated,
should be cleared somehow, moreover, the fact, that you actually include double code, i.e Core in
the dll and Core in the application is ignored for now)

general setup: U++ 1679, Windows 2003 SDK, like stated during install, mingw 4.4.0 (should u++
update to current?) and MSC9

/[creating a dll

1) create a core console, creating also the header name it after your dll

2) remove the CONSOLE_APP_MAIN stuff in the main cpp file

3) setup the configuration of package to additionally have DLL flag

4) make your code, your classes and so on.

5) build your dll project, both MINGW and MSC will produce a .dll file (MSC *also* should produce
a .lib file, but doesnt, thats why it later wont work, WHY?)

/[creating the app project that will use the dll

1) create a ctrllib (with or without main window)

2) in your app header #include <YourDIlIPackage/YourDIIPackage.h>, this should make the dll
headers and includes available, together with the class description (take care of really having
declaration and implementation in your dll well seperated)

3) in package organizer, for your app package add a library dependencie with rightcklick/new
library

4) compile with MINGW: for that purpose you either have to adjust the PATH or buildmethods
PATH stuff to make the previously compiled dll available during link time, i simply compied it to my
mingw/lib for short try

5) run your application: copy the dll also in the executable folder of your app (build/open output
folder), this should work.

4) compile with MSC9: now this is the problem: linker states it wants to have the .lib file which was
not generated when compiling the dll. if it had, one needed to copy it somehpw in the package

Page 1 of 2 ---- Generated from U++ Forum


https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=787
https://www.ultimatepp.org/forums/index.php?t=rview&th=4753&goto=23750#msg_23750
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=23750
https://www.ultimatepp.org/forums/index.php

folder of the app package, and also in the output folder, from where the app would run.

i admit, the path stuff and so on is subject to optimize, was just a short shot, but it should work
anyway.

DEPENDENCY WALKER: the mingw compiled dIl had the exported functions form all the used
packages (Core, etc), the MSC dll had NO exported symbols at all

any ideas on how to do that? this is espacially neccessaru when one wants to keep one's code
portable and usable on windows and linux..

thanks for help
PS: attached is a TestDIl and a TestDIIApp package, demonstrating the goal

File Attachnments

1) TestDi|.zip, downl oaded 350 tines

Page 2 of 2 ---- Generated from U++ Forum


https://www.ultimatepp.org/forums/index.php?t=getfile&id=1996
https://www.ultimatepp.org/forums/index.php

