Subject: Re: Clang vs. GCC
Posted by Didier on Sun, 07 Feb 2010 11:11:54 GMT

View Forum Message <> Reply to Message

This can be used to optimize the 'DestroyArray()' function by adding specialized versions for
internal types.

This function could be, for example:

template <>
inline void DestroyArray<int>(T *t, const T *lim) {

}
}

This would then get optimized out by the compiler.
This could be generalized to all internal types and factored by using a IsInternaType class:
Il general case for all complex types

template<typename T>
struct IsinternalType

{
enum { value =0 };
3
/I specialized classes for internal types
template<>
struct IsinternalType<int>
{
enum {value =1}
I3
template<>
struct IsinternalType<unsigned int>
{
enum {value =1}
I3
template<>
struct IsinternalType<float>
{

enum { value =1},

J§

... and so on for all other types you want

Page 1 of 2 ---- Generated from U++ Forum


https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=711
https://www.ultimatepp.org/forums/index.php?t=rview&th=4951&goto=25013#msg_25013
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=25013
https://www.ultimatepp.org/forums/index.php

/lthe generalized function would then become:
template <int I, class T>
inline void _DestroyArray(T *t, const T *lim) {
while(t < lim) {
t->T::~T();
t++:
}
}
/Il the specialized version (for internal types) does nothing

template <class T>
static inline void _DestroyArray(T *t, const T *lim) {}

/I FINALLY THE ORIGINAL METHOD becomes this

/it automatically selects, AT COMPIL TIME, the wright function depending on it's type
template <class T>

inline void DestroyArray(T *t, const T *lim) {

_DestroyArray< IsIinternalType<T>::value, T >(t, lim);

I3

NB: this could be easily extended to any custom type by writeing you're own specialized
IsinternalType classe dedicated to you're type

Edit: maybe the 'IsinternalType()' function would be better named by 'HasDestructor()'

Page 2 of 2 ---- Generated from U++ Forum


https://www.ultimatepp.org/forums/index.php

