Subject: using Ctrl::Add; required for templates / overloaded virtual functions
Posted by kohaitO0 on Wed, 23 Jun 2010 12:14:26 GMT

View Forum Message <> Reply to Message

hi folks,

this one is sort of freak situation in my application. nevertheless i provide it here for discussion.
consider the following example.

class MyD

: public ArrayCtrl

/lworks with Label (it has no own Add() overloads,

//does not work with ArrayCitrl, it has own Add() overloads
{

public:

typedef MyD CLASSNAME;

virtual ~MyD() {}

h

GUI_APP_MAIN
{

Label I;

MyD md,;

/loption 1: << desired >>

void (MyD::* mfp)(Ctrl &) = NULL;

mfp = (void (MyD::*)(Ctrl &)) &MyD::Add;

/lonly works if ArrayCitrl:: class has a using Ctrl::Add

/lotherwise

/lerror C2440: 'type cast' : cannot convert

/lfrom ‘overloaded-function’

/lto 'void (__thiscall Upp::Ctrl::* )(Upp::Ctrl &)’

//None of the functions with this name in scope match the target type

(md.*mfp)(l);

/loption 2: doenst work anyway, because binding to Ctrl::Add is clear.

void (Ctrl::* mfp2)(Ctrl &) = NULL,;

mfp2 = (void (Ctrl::*)(Ctrl &)) &Ctrl::Add; //(void (Ctrl::*)(Ctrl &))
(md.*mfp2)(l); /does *not* call overriden Add(Ctrl&), but the one from Citrl::

ttest().Run();
}

Page 1 of 3 ---- Generated from U++ Forum


https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=787
https://www.ultimatepp.org/forums/index.php?t=rview&th=5282&goto=27054#msg_27054
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=27054
https://www.ultimatepp.org/forums/index.php

problem is following:

i need to reference the virtual & overloaded ArrayCtrl::Add(Ctrl &) member function with a member
function pointer (in template environment, but this one produces same errors and solution is
applicable there as well). i access the Add(Ctrl&) function from topmost derived class MyD and it
works fine with all Ctrl's that have no own Add() function *overloads* (not virtual overrides). but i.e.
ArrayCtrl which has Add(Value&) and others, prevents this one from compiling.

key line is
mfp = (void (MyD::*)(Ctrl &)) &MyD::Add;
for which MSC produces C2440 error.

i managed to solve it by adding a
ArrayCtrl.h:427

using Ctrl::Add;

which enables the compiler to deduce stuff explicitly, since ArrayCtrl now explicitly provides
access to Ctrl::Add(Ctrl&) and the line compiles, both in MSC and GCC.

now i think of it as a general point to take position to.

why not providing using Ctrl::XXX ; for functions, which we know are used often, are even virtual,
are public as well, and are beeing overloaded by a deriving class?

(so far i found this to be the case for ArrayCtrl and DropList, sure there are some more)
what is your point?

PS: i could possibly circumvent the problem by specifying an intermediate class like that, exposing
Ctrl::Add explicitly, but is it the clean way?

class MyArrayCitrl

: public ArrayCitrl

{

public:

typedef MyArrayCtrl CLASSNAME;
virtual ~MyArrayCtrl() {}

using Ctrl::Add;

3

sorry for the long post, problem is not trivial though
attached a test project

Page 2 of 3 ---- Generated from U++ Forum


https://www.ultimatepp.org/forums/index.php

File Attachnents

1) ttest.rar, downl oaded 259 tines

Page 3 of 3 ---- Generated from U++ Forum


https://www.ultimatepp.org/forums/index.php?t=getfile&id=2604
https://www.ultimatepp.org/forums/index.php

