
Subject: DOCU: Ctrl design concepts
Posted by kohait00 on Mon, 30 Aug 2010 08:26:05 GMT
View Forum Message <> Reply to Message

hey guys,

i'm trying to summ up things that a have learned so far cencerning development of own Ctrl's,
where to pay attention and on what to take care. help this one to go to manual / documentation..i
think it's rather important, since own widgets are a quite common demand and everyone tries to
find its own way and pace with it. but outlining some design concepts (from the makers, not from
me would ease the task drastically, and example code sometimes is hard to understand from the
beginning. but knowing some things before (and beeing able to recognize them in actual code
later) helps a lot. so here is some of the things.. please add the rest or suggest on what more
need to go there

////////

Ctrl Design Concepts

When developing own Ctrl's one often is 'reinventing' the wheel, because there are common
patterns to do in your Ctrl that Ultimate++ is probably already providing in Ctrl base class. Thus,
knowing the base class and some of its key design concepts can make your life esier and the
development of your Ctrl faster, while focusing more on the problem than the methods. As always,
the best reference for Ctrl is its source code, which is quite large, thats why I try to sumerize some
of the usefull things you can already use. In any case, look at the virtual functions in Ctrl to see
what is meant to be implemented or used by you. I won't cover LogPos related things here, it is
covered in another docu.

Generally, a Ctrl in Upp is helper to visualize some kind of data. The data, though, is not static,
and can be changed from GUI (point and click) perspective or from API perspective, using
manipulating functions. The difference is, that GUI interaction should modify the internal data (or
state) of Ctrl AND notify application somehow about change, but modifying it using API should
NOT generate change notifications. This is a very important design rule that keeps you away from
a lot of head ache from recursive invokations when modifying Ctrl's in API.

Ctrl Tree

Ultimate++ uses a linked list for all the child Ctrl's that have been Add()ed to it, partaking of its
drawing space. The Ctrl does NOT own its children, but simply references them (Ptr<Ctrl>). They
should be owned by your appliction, somewhere in a U++ container, i.e. Array<Label> or they are
already made members of your app when using Layout files. If a Ctrl is added to another, it is
ensured to be properly removed from its previous parent, thus a Ctrl cant be part of 2 trees.

GetData / SetData

Most Ctrl's you will ever create will only need one single value to visualize or represent. This is
true for EditFields, Buttons, Labels, etc. To be able to Get / Set this single value into/from the Ctrl,

Page 1 of 2 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=787
https://www.ultimatepp.org/forums/index.php?t=rview&th=5467&goto=28346#msg_28346
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=28346
https://www.ultimatepp.org/forums/index.php

Upp uses it's own 'polymorphic' Value class (see another docu), which enables the Ctrl's to
receive and handle intrinsic dataypes internally through one single interface, reliefing you from the
convertion pain. That's why exsists GetData / SetData pair. it is the main door into your Ctrl. Even
more complex Ctrl's like TreCtrl use it to provide the currently selected index. Think of your Ctrl,
which information it could provide as general through this interface. it makes implicit usage easy,
also in terms of notification (see next)

WhenAction Callback

To notify upper layers of some changes, your Ctrl can use internally (or the user externally) the
Action() function, which will call WhenCallback. and provide the feedback This is the Callback
that can be set using '<<= THISBACK()' approach, so using it for your own Ctrl is preferable, since
it leads to Upp conform short syntaxes. Be carefull to only call Action() inside your code upon
graphical user interaction. When modifiing your Ctrl from API, it should generate no Action(). More
or diverse notifications can be provided in your controls using other global Callbacks (or even
Callback1<yourtype> or more), if needed. Use the WhenSomething name convention to reflect
Event behaviour.

Updated(), SetModify(), ResetModify(), ClearModify(), IsModified()

Often, the control needs to process or calculate other things based on the change of some data
inside the control (like maybe some results, cached values or the like, NOT graphical helper data,
this is done using Layout() which is invoked when resizing or opening the Ctrl). Use the Updated()
virtual function to realize this, because it can be triggered from 'outside' using the Update()
function. It also SetModified()'s your Ctrl, so you can check for it. Often, when data is changed,
Ctrl needs to be updated somehow calculating its things and then the user needs to be notified.
UpdateAction() does this in one step, calling both. If graphical data needs change as well,
UpdateActionRefresh() is the chain to go, which will invoke an additional Paint(). ClearModify()
acts recursively on all children too.

Accept / Reject

lorem ipsum

Layout

lerem ipsum

////////////

Page 2 of 2 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

