Subject: PolyDeepCopyNew: MSC / GCC differ in behaviour
Posted by kohaitOO on Thu, 14 Oct 2010 11:59:22 GMT

View Forum Message <> Reply to Message

hi people

i've got some issue using the PolyDeepCopyNew feature, where GCC and MSC behave
differently, while this time MSC seems to do it right, or i did sth wrong. MSC compiles well, GCC
doesnt. | use MSC9 and TDMGCC.

the problemarising is:
GCC seems not to be able to properly recognize the friend DeepCopyNew from
PolyDeepCopyNew as an alternative to the template DeepCopyNew.

any help on this one is really appriciated.
i've added a testcase down there.

#include <Core/Core.h>
using namespace Upp;

/Iwithout this one beeing in namespace upp it doesnt work eaither
/Isuppose because of friend DeepCopyNew not beeing placed / referenced to template definition
NAMESPACE_UPP

template<class T, class B = EmptyClass>

class Copyable : public B

{

public:

virtual ~Copyable() {}

virtual T* Copy() const { return PartialCopy(); }

virtual T* PartialCopy() const = 0; /{ NEVER(); return NULL; }

|8

template<class C, class B = EmptyClass>

class CopyableC : public Copyable<CopyableC<C,B>, B>
{

public:

virtual const C& GetC() const =0;

virtual C& GetC() =0;

operator const C&() const { return GetC(); }
operator C&() { return GetC(); }

8

template<class B, class C, class CB = EmptyClass>
class PolyCopyableC : public B, public PolyDeepCopyNew<CopyableC<C, CB>, CopyableC<C,

Page 1 of 3 ---- Generated from U++ Forum


https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=787
https://www.ultimatepp.org/forums/index.php?t=rview&th=5602&goto=29299#msg_29299
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=29299
https://www.ultimatepp.org/forums/index.php

CB>>

{

public:

virtual const C& GetC() const { return *this; }
virtual C& GetC() { return *this; }

3

END_UPP_NAMESPACE
I/IOWN CLASSES

/lthis one doesnt help
[INAMESPACE_UPP

/la common base interface, that should be available after copying, (i.e Offer() )
/lis meant as an extension interface on very bottom

//[should be implemented at very top

class CBase

{

public:

virtual void Offer(int a) = 0;

|8

/la common base class, which should be accessible via GetC (could be i.e Ctrl)
class Base {};

/la Base version (could be any Ctrl derive, i.e StaticText)
/Ineither Base nor Derived are to be changed, they are foreign
/lthats why so complicated

class Derived : public Base {};

/lextension of the whole thing, to make everything cloneable..
class Master : public PolyCopyableC<Derived, Base, CBase>
{

public:

Master* PartialCopy() const { return new Master(); }

virtual void Offer(int a) {}

J»
/IEND_UPP_NAMESPACE

/Iwith this one both work, but i'd like to avoid that and to have it automatic in PolyCopyableC
#if O

NAMESPACE_UPP

template<>

inline CopyableC<Base, CBase>* DeepCopyNew(const CopyableC<Base, CBase>& X) {
return x.Copy();

}

Page 2 of 3 ---- Generated from U++ Forum


https://www.ultimatepp.org/forums/index.php

END_UPP_NAMESPACE
#endif

CONSOLE_APP_MAIN

{
Array<CopyableC<Base, CBase> > al, az;

al.Add(new Master());
al <<= a2;

}

File Attachnents

1) Blate.rar, downl oaded 249 tines

Page 3 of 3 ---- Generated from U++ Forum


https://www.ultimatepp.org/forums/index.php?t=getfile&id=2888
https://www.ultimatepp.org/forums/index.php

