
Subject: Re: ValueArray behaviour / inconsistantcy / BUG?
Posted by kohait00 on Wed, 20 Oct 2010 08:45:30 GMT
View Forum Message <> Reply to Message

i've been debugging a bit, and am pretty sure thats a bug in ValueArray:

having refactored my Xmlize procedure to

#include <Core/Core.h>

using namespace Upp;

void ValueArrayXmlize(XmlIO xml, Value& v)
{
	if(xml.IsStoring())
	{
		const ValueArray& va = v;
		XmlizeStore(xml, va.Get());
	}
	if(xml.IsLoading())
	{
		Vector<Value> vv;
		::Xmlize(xml, vv);
		v = ValueArray(vv);
	}
}
INITBLOCK { RegisterValueXmlize(GetValueTypeNo<ValueArray>(), &ValueArrayXmlize,
"ValueArray"); }

CONSOLE_APP_MAIN
{
	Vector<Value> vv;
	vv << 123;
	vv << "Hallo";

	ValueArray va(vv); //picks vv, ValueArray::Data contains the Vector, ValueArray ref count
references the VA::Data
	Value v = va; //the Value now additionally references the ValueArray::Data

	RLOG(v);

	ValueArray va_ = v; //now another ValueArray references the same ValueArray::Data
	const Vector<Value>& vv_ = va_.Get();
	DUMPC(vv_);
	
	StoreAsXMLFile(v); //the pure Value is xmlized with the ValueArray::Data as Void derived
content, not as RichValue

Page 1 of 3 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=787
https://www.ultimatepp.org/forums/index.php?t=rview&th=5613&goto=29436#msg_29436
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=29436
https://www.ultimatepp.org/forums/index.php


	StoreToFile(v); //the pure Value is serialized with the ValueArray::Data as Void derived content,
not as RichValue

	Value v2;
	LoadFromXMLFile(v2); //the Value is dexmlized, with help of ValueArray to only create the ::Void
derived Container
	RLOG(v2);

	//some checks
	ASSERT(IsValueArray(v2)); //is OK
	const ValueArray& va2 = v2;
	const Vector<Value>& vv2 = va2.Get();
	ASSERT(va2.GetCount() == va.GetCount());
	for(int i = 0; i < vv2.GetCount(); i++)
		ASSERT(vv2[i] == va[i]);

	Value v3;
	LoadFromFile(v3); //is deserilized as RichValue, with ValueArray as content, wich has
ValueArray::Data as its content
	RLOG(v3); //works fine anyway

	ASSERT(IsValueArray(v3)); //still no problem, though not consistent.
	const ValueArray& va3 = v3; //CRASH, here comes the inconsistancy
	const Vector<Value>& vv3 = va3.Get();
	ASSERT(va3.GetCount() == va.GetCount());
	for(int i = 0; i < vv3.GetCount(); i++)
		ASSERT(vv3[i] == va[i]);
}

it works as expected, as far as i understand.

now the question is, how is ValueArray supposed to be used:

is it supposed to be used as 
1) Content of a RichValueRep? (Value.cpp:142: RichValue<ValueArray>::Register()
2) as a selfsustained Value interface/data container, just same as RawValue / RichValue?

as far as i got it to understand, ValueArray is kind of both. an extended Value implementation and
meant to be in container data of a normal value, but offers the ValueArray::Data : Value::Void
implementation, which is sort of Value domain.

now converting a ValueArray to a Value takes over the ValueArray::Data, serilizing it properly.
deserializing it creates a RichValueRep<ValueArray>, which is inconsistent.

>>> so how is ValueArray supposed to be handled? how to deal with the inconsistancy? i'd
suggest to make ValueArray / ValueMap a true Value derive...not a RichValue related one.. this
comes closer to the idea of the ::Void derived refcounted ValueArray::Data

Page 2 of 3 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php


here, an updated testcase

File Attachments
1) ValueArrayTest.rar, downloaded 244 times

Page 3 of 3 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=getfile&id=2903
https://www.ultimatepp.org/forums/index.php

