Subject: Re: ValueArray behaviour / inconsistantcy / BUG?
Posted by kohaitO0 on Wed, 20 Oct 2010 08:45:30 GMT

View Forum Message <> Reply to Message

i've been debugging a bit, and am pretty sure thats a bug in ValueArray:
having refactored my Xmlize procedure to

#include <Core/Core.h>

using namespace Upp;

void ValueArrayXmlize(XmlIlO xml, Value& v)

{
if(xml.IsStoring())

{
const ValueArray& va = v;
XmlizeStore(xml, va.Get());

}
if(xml.IsLoading())

{

Vector<Value> vv;
= Xmlize(xml, vv);

v = ValueArray(vv);
}

}
INITBLOCK { RegisterValueXmlize(GetValueTypeNo<ValueArray>(), &ValueArrayXmlize,

"ValueArray"); }

CONSOLE_APP_MAIN
{

Vector<Value> vv;

vV << 123;

vv << "Hallo";

ValueArray va(vv); //picks vv, ValueArray::Data contains the Vector, ValueArray ref count
references the VA::Data
Value v = va; //the Value now additionally references the ValueArray::Data

RLOG(Vv);
ValueArray va_ = v; //[now another ValueArray references the same ValueArray::Data
const Vector<Value>& vv_ = va_.Get();

DUMPC(wv_);

StoreAsXMLFile(v); //the pure Value is xmlized with the ValueArray::Data as Void derived
content, not as RichValue

Page 1 of 3 ---- Generated from U++ Forum


https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=787
https://www.ultimatepp.org/forums/index.php?t=rview&th=5613&goto=29436#msg_29436
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=29436
https://www.ultimatepp.org/forums/index.php

StoreToFile(v); //the pure Value is serialized with the ValueArray::Data as Void derived content,
not as RichValue

Value v2;

LoadFromXMLFile(v2); //the Value is dexmlized, with help of ValueArray to only create the ::Void
derived Container

RLOG(v2);

//some checks

ASSERT(IsValueArray(v2)); /lis OK

const ValueArray& va2 = v2;

const Vector<Value>& vv2 = va2.Get();
ASSERT(va2.GetCount() == va.GetCount());
for(inti = 0; i < vw2.GetCount(); i++)
ASSERT(vw2[i] == vali]);

Value v3;

LoadFromFile(v3); //is deserilized as RichValue, with ValueArray as content, wich has
ValueArray::Data as its content

RLOG(v3); //works fine anyway

ASSERT (IsValueArray(v3)); //still no problem, though not consistent.
const ValueArray& va3 = v3; //[CRASH, here comes the inconsistancy
const Vector<Value>& vv3 = va3.Get();

ASSERT(va3.GetCount() == va.GetCount());

for(inti=0; 1 <vv3.GetCount(); i++)

ASSERT(v3[i] == vali]);
}

it works as expected, as far as i understand.
now the question is, how is ValueArray supposed to be used:

is it supposed to be used as
1) Content of a RichValueRep? (Value.cpp:142: RichValue<ValueArray>::Register()
2) as a selfsustained Value interface/data container, just same as RawValue / RichValue?

as far as i got it to understand, ValueArray is kind of both. an extended Value implementation and
meant to be in container data of a normal value, but offers the ValueArray::Data : Value::Void
implementation, which is sort of Value domain.

now converting a ValueArray to a Value takes over the ValueArray::Data, serilizing it properly.
deserializing it creates a RichValueRep<ValueArray>, which is inconsistent.

>>> s0 how is ValueArray supposed to be handled? how to deal with the inconsistancy? i'd
suggest to make ValueArray / ValueMap a true Value derive...not a RichValue related one.. this
comes closer to the idea of the ::Void derived refcounted ValueArray::Data

Page 2 of 3 ---- Generated from U++ Forum


https://www.ultimatepp.org/forums/index.php

here, an updated testcase

File Attachnents

1) ValueArrayTest.rar, downl oaded 244 tines

Page 3 of 3 ---- Generated from Ut++ Forum


https://www.ultimatepp.org/forums/index.php?t=getfile&id=2903
https://www.ultimatepp.org/forums/index.php

