Subject: Re: Few questions
Posted by mr_ped on Mon, 08 Nov 2010 08:44:31 GMT

View Forum Message <> Reply to Message

Boost includes can be maybe fixed just by adjusting build method?
Still if you want some of those built parts, create a package.

Quote:
| am still very surprised that this was not already done considering how massive and useful Boost
IS.

Well, surprising, but it's like that, the boost libs are mentioned by U++ users very rarely.

| can't speak for others, but for me the whole STL and Boost were too complex to feel well with
them, | was doing pure C++ for a long time (even doing my own containers on the fly when |
needed them, but in my area of problems | did usually need just static pools and other simple
concepts which were easy to manage without libs). That's what turned me to U++, it's so small
(considering what it does), that | forced myself to learn a bit more then C++.

This is also maybe answering a bit of your "pushing the programmer" question. You look to be
extraordinary bright person with very good memory and logic, so you can remember those
extended syntax sugar of boost/spirit/Phoenix, as you demonstrate. For me it's burden, | would
have very hard time to learn all those new options, and to use them on the fly from head. From
what you do showcase it looks very good, and | can imagine to adopt it if | would use it daily, but if
| keep using C++ just rarely like now, | can't afford to learn things like this, too complex/abstract
for me, so it would take serious time to learn, and | would forgot it next 2 weeks without using it.
Everyone has different limits, skills and needs. (and once you have hammer in hand, many
things looks suddenly like a nail)

So if you don't find U++ too much weird, and you can use it straightaway, it's just good for you
(and | bet some people here will envy you a bit, including me).

Quote:Heh, so no multi-year-long review process then like | am used to then?

To bazaar not, you just ask for SVN access and commit, that's basically it.

To core the process is everything but years long. Usually you either have Mirek's attention and
then it takes as much time as it's needed (from minutes to several iterations and changes over
months), or you don't have his attention, then it can take longer or get forgotten at all. But usually
changes to core are small, so easy to review and adopt.

We don't have time here for long review... the code either works and can be used, or doesn't
work. If it turns wrong later, it will be refactored out anyway, so no point to hesitate too much, U++
is far from overly rigid system. There's serious will to not break backward compatibility just for the
sake of change (because core people are running considerable amount of commercial apps on
U++ and have to adapt them to every such change), but when something is broken by design, it
gets fixed, no matter how much it breaks old apps.

Quote:So the amount of packages is relatively low overall then? | shall work on fixing that as | get
needs.
Yes, new packages pop out mostly when somebody needs it. Although some of bazaar stuff was

Page 1 of 2 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=21
https://www.ultimatepp.org/forums/index.php?t=rview&th=5644&goto=29678#msg_29678
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=29678
https://www.ultimatepp.org/forums/index.php

done just for experimental fun, but most of it is result of somebody using it at his work.

Quote:l do question one design aspect though, why use an unused integer as a differentiator
between pick/move and copy constructors and so forth?

This is clearly question at Mirek, although I'm not sure if he's reading such long posts carefully
enough to notice.

| don't mind your copy constuctor way either, looks quite natural to me.

| wouldn't worry about registers pollution, didn't check the assembly of compilation, but I think
most of the modern compilers can optimize that part out, at least | think somebody claimed so.
Anyway, | didn't hit performance problems there yet (usually when you need deep-copy, it will take
so much CPU time, that handling one int parameter more would be "for free" even if optimizer
would be unable to cut it out? IMHO)

Try to use ThelDE a bit too if you can? I think it may irritate you a bit, but the feedback would be
very welcome, also it may help you to understand how many people U++ use and look at. (as an
RAD GUI app dev tool, so they can produce some forms/reports with few clicks and put it into DB
.. that maybe also partly answers why so few people miss those boost goodies)

Clang was unable to compile U++ sources for long time, that's why the support is lacking. Since
their new improvements | think U++ will be extended in next months to fully support it.

About Assist++ rewrite... the performance can be the decisive factor. Assist++ is outperforming
most of the C++ parsers/analyzers because of it's flaky (or almost non existent) macro/template
support. Unless you have much more clever parser, you can't do much better as Assist with the
same performance. Let's say you don't have much clever parser, just more valid one, so more
slower. In such case | think ThelDE would have to extend some caching schemes (right now the
Assist doesn't use any permanent cache at all IIRC, just parse all the source upon start of ThelDE
and selecting the package to create temporary cache). So it's not only about parser replacement,
it would require the whole Assist++ design change in case the parser would be not fast enough.
(I personally did use commercial extension Visual Assist years back, and since then | didn't see
anything so good. Assist++ is not bad, it helps me a bit, but it's not as amazing, plus the
global/local references separation is not to my taste either, but | got used to it now, and can work
effectively even in ThelDE)

Page 2 of 2 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

