
Subject: Re: Use same variable in different threads
Posted by dolik.rce on Fri, 10 Dec 2010 10:34:24 GMT
View Forum Message <> Reply to Message

Here is a little sample code for you, demonstrating the Mutex and Atomic. It is stupidly written (on
purpose, of course) to show how bad it can go if you don't use the locking. See for yourself by
uncommenting the "#define NOMUTEX".

In this example it is easy to see what is wrong with the code and it might be possible to fix it so it
works better even without locking, but in many cases the errors are more subtle and harder to
find. Also remember that if you access the shared variable from multiple places in you code, you
should use the mutex around each of them.

Here is the code: #include <Core/Core.h>
using namespace UPP;

struct mySharedData {
	int a,b;
	String c;
};

Mutex m;
mySharedData data;
Atomic threadnum;

//uncomment this to see how it ends up when not using mutex
//#define NOMUTEX

void ThreadFunction(){
	int thisthread=AtomicInc(threadnum); //thisthread serves as an unique identifier of thread, just for
the sake of the examples clarity
	for(int i = 0; i < 10; i++){
		Thread::Sleep(Random(10)); // Pretend some work...
#ifndef NOMUTEX
		m.Enter();	 // Enter the section that accesses the shared data
#endif
		data.a++;
		data.c<<data.a<<": ";
		Thread::Sleep(20); //Let's pretend that some slow operation happens here (for example file
access)
		data.b=data.a;
		data.c<<data.b<<" ["<<thisthread<<"]\n";
#ifndef NOMUTEX
		m.Leave(); // we don't need the exclusive access to data anymore, release the mutex
#endif
	}
}

Page 1 of 2 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=647
https://www.ultimatepp.org/forums/index.php?t=rview&th=5720&goto=30130#msg_30130
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=30130
https://www.ultimatepp.org/forums/index.php

CONSOLE_APP_MAIN {
	//initialize variables (no threads yet, so it is save to make it without mutex);
	threadnum=0;
	data.a=0;
	data.b=0;
	data.c="";
	
	// start the threads
	Thread::Start(callback(ThreadFunction));
	Thread::Start(callback(ThreadFunction));
	Thread::Start(callback(ThreadFunction));
	
	while(Thread::GetCount()); // the main thread should wait for other to finish, so we can see the
results
		Thread::Sleep(100);
	
	Cout()<<data.c<<"\n";
}

Honza

Page 2 of 2 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

