
Subject: Re: Use same variable in different threads
Posted by Didier on Mon, 13 Dec 2010 21:48:03 GMT
View Forum Message <> Reply to Message

Hi Koldo,

I would add just one last thing:
DEADLOCKs ==> what MT programs dread the most.

In practice, there is a case in C++ where deadlocks can appear without notice : when an
exception occurs.

Imagine an exception occurs in the middle of you're "slow operation" ==> the mutex doesn't get
released ==> a deadlock will come up soon enough

To avoid this I use, what I call a ScopedLock class:

template<class MUTEX>
class ScopedLock
{
private:
	MUTEX& mutex;

private:
	// The following constructor/operators are expilictly FORBIDDEN
 // because they have no meaning
	ScopedLock(void) {};
	ScopedLock(const ScopedLock&) {};
	ScopedLock& operator=(ScopedLock&) { return *this; };

public:
	inline 	ScopedLock(MUTEX& mut)
	: mutex(mut)
	{
		mutex.lock();
	}

	inline ~ScopedLock(void)
	{
		mutex.unLock();
	}
};

The point is to create a 'ScopedLock' object when interring a protected zone of code, and when
the scope ends ==> the unlock is automatically done IN ALL POSSIBLE CASES !! even
exceptions: The compiler handles all for you

Page 1 of 2 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=711
https://www.ultimatepp.org/forums/index.php?t=rview&th=5720&goto=30181#msg_30181
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=30181
https://www.ultimatepp.org/forums/index.php

so you're code would become:

void ThreadFunction(){
	for(int i = 0; i < 10; i++){
		Thread::Sleep(Random(10)); // Pretend some work...
		{
			ScopedLock(data.m);// Enter the section that accesses the shared data
			data.a = i;
			data.c << data.a << "\n";
			Thread::Sleep(20); //Let's pretend that some slow operation happens here (for example file
access)
			data.b = data.a;
		} // implicit release
	}
}

You don't have any more "mutex leaks" possible

Page 2 of 2 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

