Subject: Re: Value: why not float support?
Posted by rylek on Mon, 20 Dec 2010 22:08:52 GMT

View Forum Message <> Reply to Message

Hi there!

I'm afraid this is a difficult nut to crack. At first glance it seems that by adding the support of a new
type (like float) to Value we are just enriching the U++ environment and not losing anything. Yet in
reality I'm afraid we are losing some of Value's clarity. |, for instance, on numerous occasions
make a switch over a Value's GetType(). Now, for instance, when we agreed some time ago to
add BOOL_V and INT64_V, | had to manually adjust them to be able to accept a new value
subtype. Some code broke in a very tricky way back then.

All right, my switches might not be the cleanest programming technique; at least | should finally
ask Mirek to agree to add a series of inline functions to Core/Value.h to check Value types for
these convertible groups of datatypes; like

inline bool IsNumberType(int value_type)
{ return value_type == BOOL _V || value_type == INT_V
|| value_type == INT64 _V || value_type == DOUBLE_V; }

- equivalents of .IsNumber() etc. Value member functions, just operating on the type constants;
but imagine what the above is going to look like when, after FLOAT_V, we continue to add
LONG_DOUBLE_V and [U]INT8/16/32/64_V.

| myself, when working with ActiveX, for instance, sometimes find myself longing for better type
distinction in Value in order to be able to provide a better mapping between Value and VARIANT.
But then | ask myself: do | want U++ to become such pile of mess as the COM and Value such
monster as VARIANT?

And yet, it's evident that on numerous previous occassions we didn't adhere to the position we
now hold. We have already extended the numeric type set from the original INT_V / DOUBLE_V
pair (not mentioning that even INT_V is in fact superfluous) to INT64_V and BOOL_V (see? we
didn't upgrade INT_V to 64-bit, we added a different value type). We have STRING_V and
WSTRING_V (here there is some justification because conversion of long binary blocks
transferred through Strings, which was always seen as a sound option under U++, is time and
memory consuming and potentially even lossy), DATE_V and TIME_V.

This whole discussion would be much easier if the value type was two-dimensional; the above
type families (reflected in the member functions IsNumber(), IsString() and IsDateTime()) could
then represent a 'principal’ value type which would have a 'biggest' or ‘'most general' representant
(double, WString and Time in the above case) and a (perhaps extensible) family of derived
subtypes which would be able to convert themselves to and from the type family representant.

But it's not and, as | see it, it would cost all of us many a hair to seamlessly rework it like this.
Even so, you still have situations like serializing Values where it's extremely unpleasant to have
the type family growing all the time.

Page 1 of 2 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=24
https://www.ultimatepp.org/forums/index.php?t=rview&th=5468&goto=30255#msg_30255
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=30255
https://www.ultimatepp.org/forums/index.php

Regards

Tomas

Page 2 of 2 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php

