
Subject: Re: Thread::GetCurrentThreadId() and Thread::GetCurrentThreadHandle()
new methods
Posted by mirek on Sun, 09 Jan 2011 21:49:57 GMT
View Forum Message <> Reply to Message

tojocky wrote on Sun, 09 January 2011 16:28mirek wrote on Sat, 08 January 2011 14:07Ok,
added this:

ThreadId does not make sense for me now (IMO: it is Win32 specific and not really related to
Thread).

Mirek,

I think that you are not right according by:
http://suacommunity.com/dictionary/pthread_self-entry.php

Quote:In the Windows threading model each created thread has both a HANDLE and a
system-wide unique id. As a result the GetCurrentThreadId Windows function returns the same
logical information as the POSIX call.

The method DWORD WINAPI GetCurrentThread(void) returns the pseudo-handle, that is not
same with the result _beginthreadex(...).

In the other had, you are right, because in POSIX you can manage with the result pthread_self.

In the end, I need an unique Thread ID.

Well, true, but we should find a better method how to integrate it..

Quote:
mirek wrote on Sat, 08 January 2011 14:07Ok, added this:

ThreadId does not make sense for me now (IMO: it is Win32 specific and not really related to
Thread).

Note: The faster alternative to all this might be checking the pointer to TLS variable.
About Your Note, can you give me an example, please?

Thank you in advance!

Added:
By TLS variable you mean: Thread-local storage variable?

Like this:

Page 1 of 2 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=5786&goto=30577#msg_30577
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=30577
https://www.ultimatepp.org/forums/index.php

thread__ bool sThreadId;

qword GetCurrentThreadIdCustom(){
 return (qword (&sThreadId));
}

Basically yes. If inlined, it should translate into simple [fs] based load CPU op... (no calls to API).

Mirek

Page 2 of 2 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

