Subject: Re: Inverse palette conversion algorithm...
Posted by mr_ped on Sun, 21 May 2006 13:40:12 GMT

View Forum Message <> Reply to Message

| was unable to look at it sooner. :/

Well, | think swapped those two versions of code when | was benchmarking it first time, so in
reality your code was faster.
| don't understand how | could have done such mistake. Feels so embarassing, sorry.

Anyway, the improved version of my parallel flood fill is still 2 times slower, but it improved by 50%
when compared the old version, so | will post it anyway just if anyone is curious, how the same
algorithm can be speeded up by 50%.

It can be a tad faster (5%) if you inline the AddPoint function, but I tried to rather keep it more
readable, than fast.

/*
- new distance square "(d+x)"2" calculation (from old distance square "d"2" and old delta "d")
delta will change by +-4 (blue), +-2 (red) or +-1 (green)
+-1:(d+1)"2 =d"2 + (2d + 1) max 62->63: 125 (max distance delta for green)
+-2: (d+2)"2 = d*2 + (4d + 4) nax 60->62: 244
+-4 : (d+4)"2 = d*2 + (8d + 16) max 56->60: 464
*/

#ifdef COMPILER_MSC

#pragma pack(push, 1)

#endif

struct sCubePoint3 : Moveable<sCubePoint3> {

word address; //high-color 5:6:4 = address into cube space too
byte index; //index into palette

int8 delta[3]; //current deltas of this point from origin
}

#ifdef COMPILER_GCC

__attribute__ ((packed))

#endif

;’#ifdef COMPILER_MSC
#pragma pack(pop)
#endif

/[conversion map
struct PaletteCv3 {
enum {
MAX_DISTANCE_DELTA = (8*56+16),

R_SHIFT =10,
G_SHIFT =0,

Page 1 of 4 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=21
https://www.ultimatepp.org/forums/index.php?t=rview&th=545&goto=3356#msg_3356
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=3356
https://www.ultimatepp.org/forums/index.php

B_SHIFT =86,
R_MASK = ((RASTER_MAP_R-1)<<R_SHIFT),
G_MASK = ((RASTER_MAP_G-1)<<G_SHIFT),

B_MASK = ((RASTER_MAP_B-1)<<B_SHIFT),
R_ADR_ADD = (1<<R_SHIFT),
G_ADR_ADD = (1<<G_SHIFT),
B_ADR_ADD = (1<<B_SHIFT),

g

Buffer<byte> cv;
static inline word Getlndex(const RGBA &c) {
return (word(c.r >> RASTER_SHIFT_R) << R_SHIFT) +
(word(c.g >> RASTER_SHIFT_G) << G_SHIFT) +
(word(c.b >> RASTER_SHIFT_B) << B_SHIFT); }
byte Get(const RGBA& c) const { return cv[Getindex(c)]; }
PaletteCv3() { cv.Alloc(RASTER_MAP_R * RASTER_MAP_G * RASTER_MAP_B); }

I3

/lgenerator of data for conversion maps

struct sPalCv3 {

PaletteCv3& cv_pal,

const RGBA *palette;

int ncolors;

I[FIFO queue for parallel flood fill, radix-sorted by distance of points from their origin

/lthe radix sort works on dynamic subset of distances, as you never need the full range during fill
Vector<sCubePoint3> feed_me[PaletteCv3::MAX_DISTANCE_DELTA+1];

byte filedRASTER_MAP_R * RASTER_MAP_G * RASTER_MAP_B];

void AddPoint(const sCubePoint3 & cubpt, int ii, word add2address, int move, int a, int8
add2delta);

sPalCv3(const RGBA *palette, int ncolors, PaletteCv3& cv_pal);
3

struct sFillMovementData {

word mask;

word mask_delta;

int8 delta;

int a, b;

3

static const sFillMovementData fmovedata[3] =

{

{PaletteCv3::R_MASK, PaletteCv3::R_ADR_ADD, 2, 4, 4},
{PaletteCv3::G_MASK, PaletteCv3::G_ADR_ADD, 1, 2, 1},
{PaletteCv3::B_MASK, PaletteCv3::B_ADR_ADD, 4, 8, 16},

8

void sPalCv3::AddPoint(const sCubePoint3 & cubpt, int ii, word add2address, int move, int a, int8

Page 2 of 4 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

add2delta)

{

int newii;
sCubePoint3 cubpt2;

cubpt2.address = cubpt.address + add2address;
if (filled[cubpt2.address]) return;

newii = ii + a * cubpt.delta[move] + fmovedata[move].b;
ASSERT(newii > ii);

if (newii > PaletteCv3::MAX_DISTANCE_DELTA) {
newii -= PaletteCv3::MAX_DISTANCE_DELTA+1,
ASSERT(newii <= PaletteCv3::MAX_DISTANCE_DELTA);
ASSERT(newii <ii);

}

cubpt2.delta[0] = cubpt.delta]0];

cubpt2.delta[1] = cubpt.delta[1];

cubpt2.delta[2] = cubpt.delta[2];

cubpt2.index = cubpt.index;

cubpt2.delta[move] += add2delta;
feed_me[newii].Add(cubpt2);

}

sPalCv3::sPalCv3(const RGBA *palette, int ncolors, PaletteCv3& cv_pal)

: cv_pal(cv_pal), ncolors(ncolors), palette(palette)

{

int ii, jj = (RASTER_MAP_R * RASTER_MAP_G * RASTER_MAP_B), move;
sCubePoint3 cubpt;

ZeroArray(filled);
feed_me[0].Reserve(ncolors);
/IFill up the FIFO queue with colors from palette,
/lthose will start the parallel flood fill in the color cube space
ii = ncolors;
cubpt.delta[0] = cubpt.delta[1] = cubpt.delta[2] = O;
while (ii--) {
cubpt.index = ii;
cubpt.address = cv_pal.GetIndex(palettelii]);
feed_me[0].Add(cubpt);
}
/lprocess the FIFO queue untill all points in color cube space are filled (jj == 0)
ii=0;
while (true) {
/it ('feed_melii].IsEmpty()) printf("%d\t(%d)\t", ii, feed_melii]. GetCount());
while (!'feed_melii].IsEmpty()) {
cubpt = feed_melii].Pop();
if (filled[cubpt.address]) continue;

Page 3 of 4 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

cv_pal.cv[cubpt.address] = cubpt.index;
if (--jj==0) return;
filled[cubpt.address] = 1;
/ltry all possible moves (6 possible directions)
for (move = 0; move < 3; ++move)
{
if ((cubpt.deltalmove] >=0) &&
((cubpt.address & fmovedata[move].mask) < fmovedatal[move].mask))
AddPoint(cubpt, ii, fmovedatalmove].mask_delta, move, fmovedata[move].a,
fmovedata[move].delta);
if ((cubpt.deltajmove] <=0) &&
((cubpt.address & fmovedata[move].mask) >0))
AddPoint(cubpt, ii, -fmovedata[move].mask_delta, move, -fmovedata[move].a,
-fmovedata[move].delta);

}

}
if (++ii > PaletteCv3::MAX_DISTANCE_DELTA) i = 0;

}

return;

}

File Attachnents

1) test _upp_consol e.zip, downl oaded 1983 tines

Page 4 of 4 ---- Generated from Ut++ Forum

https://www.ultimatepp.org/forums/index.php?t=getfile&id=147
https://www.ultimatepp.org/forums/index.php

