
Subject: Re: Inverse palette conversion algorithm...
Posted by mr_ped on Sun, 21 May 2006 13:40:12 GMT
View Forum Message <> Reply to Message

I was unable to look at it sooner. :/

Well, I think swapped those two versions of code when I was benchmarking it first time, so in
reality your code was faster.
I don't understand how I could have done such mistake. Feels so embarassing, sorry.

Anyway, the improved version of my parallel flood fill is still 2 times slower, but it improved by 50%
when compared the old version, so I will post it anyway just if anyone is curious, how the same
algorithm can be speeded up by 50%.
It can be a tad faster (5%) if you inline the AddPoint function, but I tried to rather keep it more
readable, than fast.

/*
	 - new distance square "(d+x)^2" calculation (from old distance square "d^2" and old delta "d")
	 	delta will change by +-4 (blue), +-2 (red) or +-1 (green)
	 	+-1 : (d+1)^2 = d^2 + (2d + 1)		max 62->63: 125		(max distance delta for green)
	 	+-2 : (d+2)^2 = d^2 + (4d + 4)		nax 60->62: 244
	 	+-4 : (d+4)^2 = d^2 + (8d + 16)		max 56->60: 464
*/

#ifdef COMPILER_MSC
#pragma pack(push, 1)
#endif
struct sCubePoint3 : Moveable<sCubePoint3> {
	word			address;		//high-color 5:6:4 = address into cube space too
	byte			index;			//index into palette
	int8			delta[3];		//current deltas of this point from origin
}
#ifdef COMPILER_GCC
__attribute__((packed))
#endif
;
#ifdef COMPILER_MSC
#pragma pack(pop)
#endif

//conversion map
struct PaletteCv3 {
	enum {
		MAX_DISTANCE_DELTA 	= (8*56+16),

		R_SHIFT				= 10,
		G_SHIFT				= 0,

Page 1 of 4 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=21
https://www.ultimatepp.org/forums/index.php?t=rview&th=545&goto=3356#msg_3356
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=3356
https://www.ultimatepp.org/forums/index.php

		B_SHIFT				= 6,
		R_MASK				= ((RASTER_MAP_R-1)<<R_SHIFT),
		G_MASK				= ((RASTER_MAP_G-1)<<G_SHIFT),
		B_MASK				= ((RASTER_MAP_B-1)<<B_SHIFT),
		R_ADR_ADD			= (1<<R_SHIFT),
		G_ADR_ADD			= (1<<G_SHIFT),
		B_ADR_ADD			= (1<<B_SHIFT),
	};

	Buffer<byte> cv;
	static inline word GetIndex(const RGBA &c) {
		return	(word(c.r >> RASTER_SHIFT_R) << R_SHIFT) +
	 	(word(c.g >> RASTER_SHIFT_G) << G_SHIFT) +
	 	(word(c.b >> RASTER_SHIFT_B) << B_SHIFT); }
	byte	Get(const RGBA& c) const { return cv[GetIndex(c)]; }
	PaletteCv3()	{ cv.Alloc(RASTER_MAP_R * RASTER_MAP_G * RASTER_MAP_B); }
};

//generator of data for conversion maps
struct sPalCv3 {
	PaletteCv3& 		cv_pal;
	const RGBA 			*palette;
	int 		ncolors;
	//FIFO queue for parallel flood fill, radix-sorted by distance of points from their origin
	//the radix sort works on dynamic subset of distances, as you never need the full range during fill
	Vector<sCubePoint3> feed_me[PaletteCv3::MAX_DISTANCE_DELTA+1];
	byte				filled[RASTER_MAP_R * RASTER_MAP_G * RASTER_MAP_B];

	void AddPoint(const sCubePoint3 & cubpt, int ii, word add2address, int move, int a, int8
add2delta);

	sPalCv3(const RGBA *palette, int ncolors, PaletteCv3& cv_pal);
};

struct sFillMovementData {
	word			mask;
	word			mask_delta;
	int8			delta;
	int				a, b;
};
static const sFillMovementData fmovedata[3] =
{
	{PaletteCv3::R_MASK, PaletteCv3::R_ADR_ADD, 2, 4, 4},
	{PaletteCv3::G_MASK, PaletteCv3::G_ADR_ADD, 1, 2, 1},
	{PaletteCv3::B_MASK, PaletteCv3::B_ADR_ADD, 4, 8, 16},
};

void sPalCv3::AddPoint(const sCubePoint3 & cubpt, int ii, word add2address, int move, int a, int8

Page 2 of 4 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

add2delta)
{
	int newii;
	sCubePoint3	cubpt2;

	cubpt2.address = cubpt.address + add2address;
	if (filled[cubpt2.address]) return;
	
	newii = ii + a * cubpt.delta[move] + fmovedata[move].b;
	ASSERT(newii > ii);
	if (newii > PaletteCv3::MAX_DISTANCE_DELTA) {
		newii -= PaletteCv3::MAX_DISTANCE_DELTA+1;
		ASSERT(newii <= PaletteCv3::MAX_DISTANCE_DELTA);
		ASSERT(newii < ii);
	}
	cubpt2.delta[0] = cubpt.delta[0];
	cubpt2.delta[1] = cubpt.delta[1];
	cubpt2.delta[2] = cubpt.delta[2];
	cubpt2.index	= cubpt.index;
	cubpt2.delta[move] += add2delta;
	feed_me[newii].Add(cubpt2);
}

sPalCv3::sPalCv3(const RGBA *palette, int ncolors, PaletteCv3& cv_pal)
:	cv_pal(cv_pal), ncolors(ncolors), palette(palette)
{
	int			ii, jj = (RASTER_MAP_R * RASTER_MAP_G * RASTER_MAP_B), move;
	sCubePoint3	cubpt;
	
	ZeroArray(filled);
	feed_me[0].Reserve(ncolors);
	//Fill up the FIFO queue with colors from palette,
	//those will start the parallel flood fill in the color cube space
	ii = ncolors;
	cubpt.delta[0] = cubpt.delta[1] = cubpt.delta[2] = 0;
	while (ii--) {
		cubpt.index		= ii;
		cubpt.address	= cv_pal.GetIndex(palette[ii]);
		feed_me[0].Add(cubpt);
	}
	//process the FIFO queue untill all points in color cube space are filled (jj == 0)
	ii = 0;
	while (true) {
		//if (!feed_me[ii].IsEmpty()) printf("%d\t(%d)\t", ii, feed_me[ii].GetCount());
		while (!feed_me[ii].IsEmpty()) {
			cubpt = feed_me[ii].Pop();
			if (filled[cubpt.address]) continue;

Page 3 of 4 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

			cv_pal.cv[cubpt.address] = cubpt.index;
			if (--jj == 0) return;
			filled[cubpt.address] = 1;
			//try all possible moves (6 possible directions)
			for (move = 0; move < 3; ++move)
			{
				if ((cubpt.delta[move] >= 0) &&
					 ((cubpt.address & fmovedata[move].mask) < fmovedata[move].mask))
					 AddPoint(cubpt, ii, fmovedata[move].mask_delta, move, fmovedata[move].a,
fmovedata[move].delta);
				if ((cubpt.delta[move] <= 0) &&
					 ((cubpt.address & fmovedata[move].mask) > 0))
					 AddPoint(cubpt, ii, -fmovedata[move].mask_delta, move, -fmovedata[move].a,
-fmovedata[move].delta);
			}
		}
		if (++ii > PaletteCv3::MAX_DISTANCE_DELTA) ii = 0;
	}
	return;
}

File Attachments
1) test_upp_console.zip, downloaded 1983 times

Page 4 of 4 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=getfile&id=147
https://www.ultimatepp.org/forums/index.php

