Subject: Json serialization support
Posted by Mindtraveller on Sat, 04 Feb 2012 20:15:58 GMT

View Forum Message <> Reply to Message

Since Mirek announced "native" JSON support in U++, | tried to use it for serializing my structures
and found it to be relatively hard to implement. For example, loading not-very-complex JSON led
me to following ugly code:
for (int projectl=0; projecti<versions.GetCount(); ++projectl)
{
if (NlIsValueMap(versions[projectl]))
continue;

ValueMap curProject(versions[projectl]);

ValueMap curProjectGlobal;

if (IsValueMap(curProject[KEY_PROJECT_GLOBAL)))

curProjectGlobal = curProject[KEY_PROJECT_GLOBAL];

if ("lsDate(curProjectGlobal[KEY _PROJECT_GLOBAL_DATE]))
curProjectGlobal.Set(KEY_PROJECT_GLOBAL_DATE, GetSysDate());
if ("IsNumber(curProjectGlobal[KEY_PROJECT_GLOBAL_COUNTERY)))
curProjectGlobal.Set(KEY_PROJECT_GLOBAL_COUNTER, 0);
curProject.Set(KEY_PROJECT_GLOBAL, curProjectGlobal);

ValueMap curProjectVersion;

if (IsValueMap(curProject[KEY_PROJECT_VERSION])))

curProjectVersion = curProject(KEY_PROJECT_VERSION];

if (lsDate(curProjectVersion[KEY_PROJECT_VERSION_DATE]))
curProjectVersion.Set(KEY_PROJECT_VERSION_DATE, GetSysDate());

if (IlIsNumber(curProjectVersion[KEY_PROJECT_VERSION_COUNTERY]))
curProjectVersion.Set(KEY_PROJECT_VERSION_COUNTER, 0);

ValueMap curProjectVersionCurrent;

if (IsValueMap(curProjectVersion[KEY_PROJECT_VERSION_CURRENT]))
curProjectVersionCurrent = curProjectVersion[KEY_PROJECT_VERSION_CURRENT];
curProjectVersion.Set(KEY_PROJECT_VERSION_CURRENT, curProjectVersionCurrent);

curProject.Set(KEY_PROJECT_VERSION, curProjectVersion);

versions.SetAt(projectl, curProject);

}

Maybe ValueMap and ValueArray classes are good for other tasks, anyway.

So | thought about little extending JSON support in U++ making it the same as serialization with
Stream and Xml - as IMO it was a brilliant solution to make it pure and clear inside a single
member function (I mean Serialize and Xmlize).

After a day of work I've made a number of helper classes based on CParser (and inspired with
Mirek's JSON parsing functions).

Page 1 of 3 ---- Generated from U++ Forum


https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=441
https://www.ultimatepp.org/forums/index.php?t=rview&th=6528&goto=35353#msg_35353
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=35353
https://www.ultimatepp.org/forums/index.php

Finally, I've come to what | wanted:
struct TestStruct2

{.

int c;

bool d;

double €;

Time ft;

void Jsonize(JsonlO &json)
{.

json

(‘c", ©)

(d", d)

(e, )

("

}

%

struct TestStruct

{

String u;

String a;

int b;

TestStruct2 c;

VectorMap<String, Vector<int> > mapl;

void Jsonize(JsonlO &json)
{
json
(‘a"a)
("b".b)
(‘c"c)
("u".u)
("mapl",mapl)
},
%

As you can see, JSON serialization is used the common way. Also it natively supports
VectorMap/ArrayMap and Vector/Array serialization.

The code was not widely tested and not all the types are supported, but this is the beginning.

Also the efficiency of different serialization types was tested.
JSON/XML/BINARY timing:

release: 125/265/16

debug: 842/1857/125

Page 2 of 3 ---- Generated from U++ Forum


https://www.ultimatepp.org/forums/index.php

Maybe, not that bad for 1-day code which was not optimized at all.

So here are sources with Jsonize package. If it is compiled as a main package (not as
dependency), the test binary is made.

Any comments, critics and suggestions are welcome.

File Attachnents

1) Jsoni ze. zi p, downl oaded 309 tines

Page 3 of 3 ---- Generated from U++ Forum


https://www.ultimatepp.org/forums/index.php?t=getfile&id=3646
https://www.ultimatepp.org/forums/index.php

