Subject: Re: Added Eigen
Posted by forlano on Fri, 10 Aug 2012 06:42:56 GMT

View Forum Message <> Reply to Message

koldo wrote on Tue, 07 June 2011 07:37Hello all
Eigen library has been included to Bazaar. See here for details.
It includes matrix algebra and math algorithms.

In addition to the Eigen package, there is an Eigen_demo package with many demos from very
simple ones to non-linear equations systems solving and optimization.

U++ Bazaar Eigen packages have been cooked by Honza (dolik.rce) and koldo (me).
Hello,

in the last week | needed a robust non linear fitting algorithm. I looked for it on the net and
downloaded several. Unfortunately they do not compile on my windows machine or needed other
libraries.

| was giving up when | realized it was already in my computer since one year... and the best one!
Thanks for providing this excellent package.

| have modified it for my need and of course it work as expected. Here my demo for a logistic fit:

#include <Core/Core.h>
using namespace Upp;

#include <plugin/Eigen/Eigen.h>
#include <plugin/Eigen/unsupported/Eigen/NonLinearOptimization>

using namespace Eigen;

/I Generic functor
template<typename _Scalar, int nx = Dynamic, int ny = Dynamic>
struct Functor {

typedef _Scalar Scalar,

enum {

InputsAtCompileTime = nx,

ValuesAtCompileTime = ny

h

typedef Matrix<Scalar,InputsAtCompileTime,1> InputType;
typedef Matrix<Scalar,ValuesAtCompileTime,1> ValueType;
typedef Matrix<Scalar,ValuesAtCompileTime,InputsAtCompileTime> JacobianType;

const int m_inputs, m_values;

Page 1 of 3 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=112
https://www.ultimatepp.org/forums/index.php?t=rview&th=6067&goto=37031#msg_37031
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=37031
https://www.ultimatepp.org/forums/index.php

Functor() : m_inputs(InputsAtCompileTime), m_values(ValuesAtCompileTime) {}
Functor(int inputs, int values) : m_inputs(inputs), m_values(values) {}

int inputs() const {return m_inputs;}
int values() const {return m_values;}

// you should define that in the subclass :
virtual void operator() (const InputType& x, ValueType* v, JacobianType* _j=0) const {};
3

struct LogisticA_functor : Functor<double> {
LogisticA_functor() : Functor<double>(3,15) {}
static const double x[15];
static const double y[15];
int operator()(const VectorXd &b, VectorXd &fvec) const {
ASSERT(b.size()==3);
ASSERT(fvec.size()==15);
for(int i=0; i<15; i++)
fvecli] = b[0] / (1.0 + b[1]*exp(-1.0 * b[2] * X[i])) - YIi];
return O;
}
3
const double LogisticA _functor::x[15] = {-280.0, -240.0, -200.0, -160.0, -120.0, -80.0, -40.0, 0.0,
40.0, 80.0, 120.0, 160.0, 200.0, 240.0, 280.0};
const double LogisticA_functor::y[15] = {0.061276, 0.071429, 0.091574, 0.112821, 0.132959,
0.131597, 0.167887, 0.198380, 0.221380, 0.292292, 0.351831, 0.445803, 0.497754 ,
0.609337,0.632353};

void NonLinearOptimization() {

VectorXd x(3);
x << 5., 5.,0.01; // Initial values

/ffirst run
LogisticA_functor functor;
NumericalDiff<LogisticA_functor> numDiff(functor);
LevenbergMarquardt<NumericalDiff<LogisticA_functor> > Im(numDiff);
int ret = Im.minimize(x);
if (ret == LevenbergMarquardtSpace::ImproperinputParameters ||
ret == LevenbergMarquardtSpace::TooManyFunctionEvaluation)
Cout() << "\nNo convergence!: " << ret;
else {

for (int i=0; i<3; i++) Cout() << "Parameter: "<<i<<" =" << x[i] << "\n";

}

//[second run with new data of different length and same curve to fit

Page 2 of 3 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

I

/I X[13] = {-280.0, -240.0, -200.0, -160.0, -120.0, -80.0, -40.0, 0.0, 40.0, 80.0, 120.0, 160.0,
200.0};

/I y[13] = {0.061276, 0.071429, 0.091574, 0.112821, 0.132959, 0.131597, 0.167887, 0.198380,

0.221380, 0.292292, 0.351831, 0.445803, 0.497754};
I 22?2

}

CONSOLE_APP_MAIN
{ NonLinearOptimization();

}

Now, and here comes the problems, | would like to use the same curve, with the same number of
parameters, but with a NEW dataset [X,Y] of different size.

| can duplicate the code (new functor and new drive) and it should work. But | need to do it up to
16 different dataset and my way is very, very silly.

It should be a way to modify the template of the functor to permit to feed at request a data set
[X,Y] of N values.

Unfortunately the template structure and the operator() scary me and | do not know where to put
my hands.

Can | ask a more easy way to drive the same functor with different dataset leaving unchanged the
fitting curve?

Thanks a lot for your patience.
Luigi

Page 3 of 3 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

