
Subject: InVector commited
Posted by mirek on Sat, 16 Feb 2013 16:50:05 GMT
View Forum Message <> Reply to Message

U++ just got 5 new containers, all based on a new idea about how to implement fast-insertion
vector:

InVector - fast insertion vector
InArray - ..and its Array flavor
SortedIndex - index that keeps keys in sorted order and uses binary search
SortedVectorMap - ...its (In)Vector Map derivative
SortedArrayMap - ...(In)Array derivative

Interface-wise, InVector behaves just like normal Vector (give or take some methods). Insertion
times are fast, as demonstrated by benchmark that takes array of N elements, then inserts 10000
elements at position 0, one by one, then removes all of them in single go (and that done 100 times
to get some meaningfull numbers) (all tests performed with 64bit linux):

 [In]Vector<String> o;
	for(int i = 0; i < n; i++)
		o.Add(AsString(i));
	String h = "0";
	TimeStop tm;
	for(int i = 0; i < 100; i++) {
		for(int j = 0; j < 10000; j++)
			o.Insert(0, h);
		o.Remove(0, 10000);
	}

InVector:
1000: 136 ms
2000: 135 ms
5000: 138 ms
10000: 143 ms
20000: 151 ms
50000: 165 ms
100000: 188 ms
200000: 218 ms
500000: 276 ms
1000000: 333 ms
2000000: 403 ms
5000000: 510 ms

Vector:

Page 1 of 3 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=7336&goto=39116#msg_39116
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=39116
https://www.ultimatepp.org/forums/index.php

1000: 3839 ms
2000: 4560 ms
5000: 6702 ms
10000: 10377 ms
20000: 19982 ms
50000: 48384 ms

(after 50000, it got painfully slow for Vector).

Worst case for index retrieval (e.g. operator[]) is log(n), but it is quite fast in real situation. For
simple linear scans over single InVector, you can expect operator[] to be 3 times slower than on
for Vector::operator[] (thanks to per-thread caching). In the very worst case, it can be about 30
times slower for any realistic element counts (tens of millions). But keep in mind that
Vector::operator[] is extremely fast... Iterators to InVector are similar, linear scans are very fast
again.

InVector has optimized Find[Upper/Lower]Bound methods which return index and have log(n)
worst case.

Moving on to associative variants, they are about as fast as node based binary trees (std::set,
std::map) for any realistic element counts (again, tens of millions). Inserts are bit (~30%) slower
for very large element counts (millions), searches are quite (~50%) faster. Benchmark numbers
for various data types for benchmark that scans 3MB for frequency of all words (23000 unquie
words in book total) (scan repeated 10 times to get meaningful numbers):

std::map<std::string, int> time: 3131 ms
std::map<String, int> time: 2041 ms
SortedVectorMap<String, int> time: 1005 ms
SortedArrayMap<String, int> time: 1045 ms
VectorMap<String, int> time: 378 ms

Header for new containers is in Core/InVector.h.

Tests:

upptst/InVector
upptst/InArray
upptst/SortedIndex
upptst/SortedAMap

Benchmarks:

benchmarks/InVector
benchmarks/InVectorIR
benchmarks/AllMaps

Page 2 of 3 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

Maturity status: Despite rigorous testing I would not hurry to replace all Vectors with InVectors
where ever benefit can be expected, but I would dare to use them in the new yet untested code.

TODO: Docs...

Page 3 of 3 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

