
Subject: One vs std::experimental::optional
Posted by piotr5 on Mon, 30 Jun 2014 19:03:00 GMT
View Forum Message <> Reply to Message

I discovered an interesting discussion about classes storing optional values. so I thought I might
try the same problem-case with Upp::One
 struct A
 {
 constexpr A(int &x) : ref(x) {}
 int &ref;
 };

 int toptional()
 {
 int n1 = 0, n2 = 0;
 One<A> opt(new A(n1));
 A* a=new A(n2);
 opt=a;
 opt->ref = 1;
 Cout() << n1 << " " << n2 << EOL;
 }
the result is "0 1" as it should be. since upp isn't using a union, and it only works with values on
heap (thereby being useless for constexpr values because of the required destructor), it's quite
safe to use. I wonder why stdc++ wont implement it that way. what's the use of constexpr optional
values anyway?

unfortunately I don't quite understand the things posted in above link. why isn't 1<2?

Page 1 of 1 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=32
https://www.ultimatepp.org/forums/index.php?t=rview&th=8980&goto=43327#msg_43327
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=43327
https://www.ultimatepp.org/forums/index.php

