
Subject: Re: How would you design a good copy/move semantics system?
Posted by Lance on Thu, 08 Jan 2015 00:16:58 GMT
View Forum Message <> Reply to Message

Hi cbpporter:

Happy New Year!

c++11 is here and will stay. The features you required are part of c++11, which means you can
use it without any(almost) extra effort.

The code you quoted is like this: if base class have a copy constructor, derived class' move
constructor will use the base class copy constructor to construct the base part of a derived object
unless explicitly delegated to another ctor. Sounds very complicated, maybe it's easier to use an
example:

struct base
{
 base() : buff(nullptr), buff_len(0u){}

 // copy ctor
 base(const base& b): buff_len(b.buff_len)
 {
 if(buff_len)
 {
 buff=new char[buff_len];
 memcpy(buff,b.buff,buff_len);
 }else
 buff=nullptr;
 }

 // move ctor, essentially do what Upp-pick is supposed to do
 base(base&& b):buff_len(b.buff_len), buff(b.buff)
 {
 b.buff_len=0u;
 b.buff=nullptr;
 }

private:
 char * buff;
 unsigned buff_len;
};

struct derived : public base
{
 derived(): i(0){} // will call base::default ctor to consturct base part of *this;

Page 1 of 2 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=9143&goto=44147#msg_44147
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=44147
https://www.ultimatepp.org/forums/index.php

 derived(const derived& d) : i(d.i) {} // will call base::copy ctor to construct base part of *this;

 derived(derived&& d): i(d.i){} // you may expect base::move ctor to be called to construct base
part of *this.
 // I do think the c++ committee should default to use base move ctor for derived
move ctor.
 // unfortunately, this is not the case. you have to explicitly delegate the construction
of
 // the base part of *this to base move ctor, with something like this:
 //
 // derived(derived&& d) : base(std::move(d)), i(d.i){}
 //
 // this is the point I was trying to make.

private:
 int i;
};

HTH.

Lance

Page 2 of 2 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

