
Subject: Which parts of Esc are the biggest reasons of its slowliness?
Posted by fudadmin on Tue, 15 Aug 2006 08:29:51 GMT
View Forum Message <> Reply to Message

Which parts of Esc and/or CParser are the biggest reasons of its slowliness?
I've started re-writing some parts of my favourite interpreter (and its U++ port...). To remove some
limitations and make the executable smaller I want to use as much as possible code from U++.
Then, maybe I could offer some speed improvements to Esc, too?
My suspects or parts of interest:
StringStream:
1. too many function calls get(c) when e.g get32? (actually I found the analog for me - get32be)
2. some "inline" are ignored by the compiler (I've read that you would need "force inline" for MS
compilers...)
3. because the raw data are not contigeous in memory but with too many links (or something...)

GLOBAL macro...

in CParser:
C syntax {}
 e.g, I guess, using If ... endif for ...endfor could speed the things up? (I will be using this anyway
and in compiled scripts just 1 unsigned char.)

Anything else to consider?
Pointers vs references? Type casting?
And, Mirek, (or anyone else), do you have your suspects in an approximate % order?.

P.S.
What is better, when and why (I'm confused because of UPP_HEAP)?

	U8 m_CodeBuffer[4];
		m_CodeBuffer[0]=s.Get8();
		m_CodeBuffer[1]=s.Get8();
		m_CodeBuffer[2]=s.Get8();
		m_CodeBuffer[3]=s.Get8();
		
	int m_Index=0;
	result_int32be =(((U8)(m_CodeBuffer[m_Index]) << 24) |
			((U8)(m_CodeBuffer[m_Index + 1]) << 16) |
			((U8)(m_CodeBuffer[m_Index + 2]) << 8) |
			(U8) m_CodeBuffer[m_Index + 3]);

or

int get32int()
{

Page 1 of 2 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=2
https://www.ultimatepp.org/forums/index.php?t=rview&th=1319&goto=4552#msg_4552
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=4552
https://www.ultimatepp.org/forums/index.php

	U8* m_CodeBuffer = new U8[4];
	int m_Index=0;
	int x =(((U8)(m_CodeBuffer[m_Index]) << 24) |
			((U8)(m_CodeBuffer[m_Index + 1]) << 16) |
			((U8)(m_CodeBuffer[m_Index + 2]) << 8) |
			(U8) m_CodeBuffer[m_Index + 3]);
	delete [] m_CodeBuffer;
	return x;
}

does operator *new* changes its behaviuor in case of USE_UPP_HEAP? What are
pluses/minuses of USE_MALLOC in relation if I use malloc - realloc in my code? (I know not to
mix *new* and free()...)

Are there any docs about memory things in upp?

P.S.2 Or, Mirek, what about sharing some of your favourite links with our community ?
Thanks in advance.

Page 2 of 2 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

