
Subject: Heap errors behavior is dependent on target machine.
Posted by jfranks on Sat, 28 Nov 2015 13:03:33 GMT
View Forum Message <> Reply to Message

Brief Description: Memory heap errors don't happen for development
 		 machine 'A'. However, they do occur for the same
 		 executable image on the embedded target machine
 		 'B'.

Full Description of the issue:

 Description of development machine -- i.e., machine 'A'

 The development machine is a Dell desktop computer that has an
 Intel CORE i5, and a host operating system Windows 7. A virtual
 machine was installed using Oracle VM Virtual Box to run a guest
 operating system Linux Mint 17.2. Our application development was
 done on this virtual machine as a Linux based application using U++
 nightly snapshot upp-x11-src-9200.

 Description of the embedded target machine -- i.e., machine 'B'

 This is proprietary custom hardware that has a touchscreen, custom
 keypad entry device, a commercial power supply, commercial single
 board computer, and a hard drive. The operating system is the same
 as that used on the development machine. The CPU is compatible
 to run the executable image produced on the development machine.

 Description of the problem we are having with U++ memory diagnostic:

 1. We developed and debugged our graphical U++ application on
 machine 'A'. All memory heap errors were located and
 corrected. The executable image developed on this machine is
 compatible for running on machine 'B'.

 2. We installed the debug version of our executable image on machine
 'B'. Everything runs great except when we exit our application.
 The behavior is different on machine 'B' in that there are memory
 heap errors, followed by a segfault on X11.

 	 Heap leaks detected!
	 Segmentation fault

 3. We enabled machine 'B' to have development capability and installed
 U++ IDE based on upp-x11-src-9200. We did a code checkout into this
 machine from our SVN server. We compiled the code. Then we ran the
 debug executable built on this machine. The result was the same
 as item 2 above.

Page 1 of 3 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=30058
https://www.ultimatepp.org/forums/index.php?t=rview&th=9480&goto=45539#msg_45539
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=45539
https://www.ultimatepp.org/forums/index.php

 The debug executable image built on machine 'B' was copied to
 machine 'A' and it exhibited a different behavior -- it worked
 correctly on exit from the application, i.e., there were no
 memory heap errors, nor segfault. That is odd.

 Next, we decided to start debugging on machine 'B' in earnest.
 We modified our application code and inserted MemoryIgnoreLeaksBegin();
 and MemoryIgnoreLeaksEnd(); so as to exclude all of our application
 code from leak detection. The result was the same as in item 2 above.

 We more aggressively applied the U++ memory ignore function by reworking
 the GUI_APP_MAIN macro and explicitly replaced it with the following.

//GUI_APP_MAIN {
void GuiMainFn_();
int main(int argc, const char **argv, const char **envptr)
{
MemoryIgnoreLeaksBegin();
	UPP::AppInit__(argc, argv, envptr);
	UPP::Ctrl::InitX11(NULL);
	UPP::AppExecute__(GuiMainFn_);
	UPP::Ctrl::ExitX11();
	UPP::AppExit__();
MemoryIgnoreLeaksEnd();
	return UPP::GetExitCode();
}

void GuiMainFn_()
{
	... our application code starts here
}

 The results on machine 'B' did not change -- still a memory heap
 issue on exit and a segfault. A large log file was produced with
 many memory breakpoints.

 Next, we compiled a release version of the application on
 machine 'B' without any debug flags. Everything works great
 because the U++ memory diagnostics are disabled. As we run the
 release version, there is nothing that indicates a problem at any
 time, even when we exit.

 The log file generated from running the debug was over 2400 items.
 I've attached a snapshot of the call-stack while in the debugger
 for the lowest numbered memory break-point #1.

 We are having a difficult time sorting this out and are asking

Page 2 of 3 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

 for help or ideas of where we go from here.

-- Jeff

File Attachments
1) call-stack.jpg, downloaded 440 times

Page 3 of 3 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=getfile&id=4887
https://www.ultimatepp.org/forums/index.php

