Subject: Re: Writing Bits object to disk
Posted by crydev on Tue, 02 May 2017 20:54:52 GMT

View Forum Message <> Reply to Message

Hi Mirek,

| realized that my pipelined function was wrong. | made a silly mistake in the test case. The
function is now fixed as:

Il Testing pipelined version of Bits::Set(int, bool)

void Bits::PipelineSet(int i, const dword bs)

{

/I Check whether i is within the bounds of the container.
ASSERT(i >= 0 && alloc >= 0);

/I Get the DWORD index for the internal buffer.
intq=i>>5;

/I Get the bit index of the next available DWORD.
i &= 31;

/l Do we need to expand the internal buffer first?

/I Also check whether we can place 4 bits in the existing DWORD. If not, we should expand.
if(q >= alloc)

Expand(a);

/I Get integer bit values according to existing DWORD value and indices.
/I Assuming default value of bool is Ox1 if true!

const dword d1 = !l(bs & PowersOfTwol[0]) << i;

const dword d2 = !l(bs & PowersOfTwo([8]) << (i + 1);

const dword d3 = !l(bs & PowersOfTwo[16]) << (i + 2);

const dword d4 = !(bs & PowersOfTwo[24]) << (i + 3);

}bp[Q] = (bpla] [d1 | d2 | d3 | d4);

| did some more tests, and | am really surprised by the amount of difference the compiler and

CPU make in this situation. | had to switch from my i7 2600k CPU to an Intel Core i7 4710MQ
CPU because | was missing AVX2 (AVX2 really made it fast) :) When compiled with the Visual
C++ compiler, | got the following result.

| was surprised to see how the newer CPU runs the simple pipelined version a lot faster than the
2600k! | also saw that a vectorized version of the Set function is almost simpler than the regular
one. :) However, when | use the Intel C++ compiler, the results are very different:

Page 1 of 3 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=1540
https://www.ultimatepp.org/forums/index.php?t=rview&th=9854&goto=47991#msg_47991
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=47991
https://www.ultimatepp.org/forums/index.php

It seems that the Intel compiler generates way different code, making the SSE2 version blazingly
fast. 10 times faster than the regular Set function. The strange thing is, that when | use the Visual
C++ compiler, the timing of the different test cases is as | expected them to be. | expected the
AVX2 function to be faster than the SSE2 one, which clearly is not the case with the Intel
compiler.

The sources of my vectorized functions is as following:

Il Testing vectorized version of Bits::Set(int, bool)

/' We require that the input bools have value 0x80, e.g. most significant byte set if true.
void Bits::VectorSet(int i, const unsigned char vec[16])

{

/I Check whether i is within the bounds of the container.

ASSERT(i >= 0 && alloc >= 0);

/I Get the DWORD index for the internal buffer.
intq=i>>5;

// Do we need to expand the internal buffer first?
if(q >= alloc)
Expand(q);

/l Get the bit index of the next available DWORD.
i &= 31;

/I Create a bitmask with vector intrinsics.
__m128i boolVec = _mm_set_epi8(vec[15], vec[14], vec[13], vec[12], vec[11], vec[10], vec[9],
vec[8]
, vec[7], vec[6], vec[5], vecl[4], vec]3], vec[2], vec[1], vec[0]);
const int bitMask = _mm_movemask_epi8(boolVec);

/I Set the resulting WORD.

LowHighDword w;
w.dw = bpl[q];

if (i ==16)

{

w.w2 = (short)bitMask;
}

else

{

w.w1l = (short)bitMask;
}

bp[q] = w.dw;
}

Page 2 of 3 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

/l The same vectorized function, but with AVX2 instructions.
void Bits::VectorSetAVX2(int i, const unsigned char vec[32])

{

/I Check whether i is within the bounds of the container.
ASSERT(i >= 0 && alloc >= 0);

/I Get the DWORD index for the internal buffer.
intq=1i>>5;

// Do we need to expand the internal buffer first?
if(q >= alloc)
Expand(q);

/I Get the bit index of the next available DWORD.
i &= 31;

/I Create a bitmask with vector intrinsics.

__m256i boolVec = _mm256_set_epi8(vec[31], vec[30], vec[29], vec[28], vec[27], vec[26],
vec[25], vec[24], vec[23]

, vec[22], vec[21], vec[20], vec[19], vec[18], vec[17], vec[16], vec[15], vec[14], vec[13], vec[12],
vec[11]

, vec[10], vec[9], vec[8], vec[7], vec[6], vec[5], vec[4], vec[3], vec[2], vec[1], vec[O]);

const int bitMask = _mm256_movemask_epi8(boolVec);

/I Set the resulting DWORD.
bp[q] = bitMask;

}
Is it feasible to make a vectorized version for U++ by default, or should | provide it for myself?
Thanks,

evo

File Attachnments

1) Capture.PNG downl oaded 581 tines
2) Capture2. PNG downl oaded 639 tines

Page 3 of 3 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=getfile&id=5252
https://www.ultimatepp.org/forums/index.php?t=getfile&id=5253
https://www.ultimatepp.org/forums/index.php

