Subject: Re: Writing Bits object to disk
Posted by crydev on Tue, 02 May 2017 20:54:52 GMT

View Forum Message <> Reply to Message

Hi Mirek,

| realized that my pipelined function was wrong. | made a silly mistake in the test case. The
function is now fixed as:

Il Testing pipelined version of Bits::Set(int, bool)

void Bits::PipelineSet(int i, const dword bs)

{

/I Check whether i is within the bounds of the container.
ASSERT(i >= 0 && alloc >= 0);

/I Get the DWORD index for the internal buffer.
intq=i>>5;

/I Get the bit index of the next available DWORD.
i &= 31;

/l Do we need to expand the internal buffer first?

/I Also check whether we can place 4 bits in the existing DWORD. If not, we should expand.
if(q >= alloc)

Expand(a);

/I Get integer bit values according to existing DWORD value and indices.
/I Assuming default value of bool is Ox1 if true!

const dword d1 = !l(bs & PowersOfTwol[0]) << i;

const dword d2 = !l(bs & PowersOfTwo([8]) << (i + 1);

const dword d3 = !l(bs & PowersOfTwo[16]) << (i + 2);

const dword d4 = !(bs & PowersOfTwo[24]) << (i + 3);

}bp[Q] = (bpla] [ d1 | d2 | d3 | d4);

| did some more tests, and | am really surprised by the amount of difference the compiler and

CPU make in this situation. | had to switch from my i7 2600k CPU to an Intel Core i7 4710MQ
CPU because | was missing AVX2 (AVX2 really made it fast) :) When compiled with the Visual
C++ compiler, | got the following result.

| was surprised to see how the newer CPU runs the simple pipelined version a lot faster than the
2600k! | also saw that a vectorized version of the Set function is almost simpler than the regular
one. :) However, when | use the Intel C++ compiler, the results are very different:
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It seems that the Intel compiler generates way different code, making the SSE2 version blazingly
fast. 10 times faster than the regular Set function. The strange thing is, that when | use the Visual
C++ compiler, the timing of the different test cases is as | expected them to be. | expected the
AVX2 function to be faster than the SSE2 one, which clearly is not the case with the Intel
compiler.

The sources of my vectorized functions is as following:

Il Testing vectorized version of Bits::Set(int, bool)

/' We require that the input bools have value 0x80, e.g. most significant byte set if true.
void Bits::VectorSet(int i, const unsigned char vec[16])

{

/I Check whether i is within the bounds of the container.

ASSERT(i >= 0 && alloc >= 0);

/I Get the DWORD index for the internal buffer.
intq=i>>5;

// Do we need to expand the internal buffer first?
if(q >= alloc)
Expand(q);

/l Get the bit index of the next available DWORD.
i &= 31;

/I Create a bitmask with vector intrinsics.
__m128i boolVec = _mm_set_epi8(vec[15], vec[14], vec[13], vec[12], vec[11], vec[10], vec[9],
vec[8]
, vec[7], vec[6], vec[5], vecl[4], vec]3], vec[2], vec[1], vec[0]);
const int bitMask = _mm_movemask_epi8(boolVec);

/I Set the resulting WORD.

LowHighDword w;
w.dw = bpl[q];

if (i ==16)

{

w.w2 = (short)bitMask;
}

else

{

w.w1l = (short)bitMask;
}

bp[q] = w.dw;
}
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/l The same vectorized function, but with AVX2 instructions.
void Bits::VectorSetAVX2(int i, const unsigned char vec[32])

{

/I Check whether i is within the bounds of the container.
ASSERT(i >= 0 && alloc >= 0);

/I Get the DWORD index for the internal buffer.
intq=1i>>5;

// Do we need to expand the internal buffer first?
if(q >= alloc)
Expand(q);

/I Get the bit index of the next available DWORD.
i &= 31;

/I Create a bitmask with vector intrinsics.

__m256i boolVec = _mm256_set_epi8(vec[31], vec[30], vec[29], vec[28], vec[27], vec[26],
vec[25], vec[24], vec[23]

, vec[22], vec[21], vec[20], vec[19], vec[18], vec[17], vec[16], vec[15], vec[14], vec[13], vec[12],
vec[11]

, vec[10], vec[9], vec[8], vec[7], vec[6], vec[5], vec[4], vec[3], vec[2], vec[1], vec[O]);

const int bitMask = _mm256_movemask_epi8(boolVec);

/I Set the resulting DWORD.
bp[q] = bitMask;

}
Is it feasible to make a vectorized version for U++ by default, or should | provide it for myself?
Thanks,

evo
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