Subject: Re: Writing Bits object to disk
Posted by crydev on Sat, 06 May 2017 08:28:39 GMT

View Forum Message <> Reply to Message

Hi Mirek,

| worked out the test you suggested. The pipelined set function is not faster anymore. | can
understand that this is the case. The SSE?2 vectorized set function now is around 30% faster:

/ Non naive vector test :D

const int VectorBoolOrBitsetTestBitSetVectorizedNonNaive(Bits& buffer, const Vector<unsigned
char>& rand)

{

unsigned char vec[32];

const int count = rand.GetCount();

for (inti=0; i < count; i += sizeof(vec))

{
for (intj = 0; j < sizeof(vec); ++j)
{
vec[j] = rand[i + j] > 50 ? 0x80 : 0xO0;
}

/I Use the vectorized set method.
buffer.VectorSetNonNaive(i, vec);
}

int alloc = 0;

buffer.Raw(alloc);

return alloc;

}

/I The non naive vector set function, that actually implements only the vector
/I setting, and not also the comparison of the input!

void Bits::VectorSetNonNaive(int i, const unsigned char vec[32])

{

/I Check whether i is within the bounds of the container.

ASSERT(i >= 0 && alloc >= 0);

/I Get the DWORD index for the internal buffer.
intq=1>>5;

// Do we need to expand the internal buffer first?
if(q >= alloc)
Expand(a);

/I Get the bit index of the next available DWORD.
i &= 31;

Page 1 of 2 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=1540
https://www.ultimatepp.org/forums/index.php?t=rview&th=9854&goto=48011#msg_48011
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=48011
https://www.ultimatepp.org/forums/index.php

/I Create a bitmask with vector intrinsics.

__m128i boolVecLow = _mm_load_si128((_m128i*)vec);
__m128i boolVecHigh = _mm_load_si128((__m128i*)(vec + 16));
const int bitMaskLow = _mm_movemask_epi8(boolVecLow);
const int bitMaskHigh = _mm_movemask_epi8(boolVecHigh);

/I Set the resulting WORD.
LowHighDword w;

w.dw = bp[q];

w.w1l = (short)bitMaskLow;
w.w2 = (short)bitMaskHigh;
bp[q] = w.dw;

}

However, | was thinking: if | use vectorized code, | should be allowed to vectorize everything,
including the comparison of the input values! | thought about my own use case (where | indeed
also have to perform the kind of comparison you suggested), and | realized that this comparison
could be vectorized. When | did so, the speeds of the SSE2 and AVX2 vectorized code examples
skyrocketed. | understand that you may think of the vectorized comparison as a 'proof-of-concept’
rather than a realistic implementation for U++, but | can actually utilize this implementation for my
memory scanner. Besides, it was fun to write code like this. | am surprised how easy it can be
done and how easily the game is played out. :)

The source code is of the other tests is once again located at my Bitbucket repository:
https://bitbucket.org/evolution536/cry-performance-test/src/
212c3b4f51a29efale70841e76ccebllbcaacfO6/VectorBoolOrBitsetT
est.cpp?at=master&fileviewer=file-view-default

What do you think about a possible 'multi-set' implementation with an interface like:

void Set(int i, const Vector<bool>& vec, const int count);

Such function could contain a loop for a vector implementation, and the sequential Set function for
the remainder. Maybe also a set function that allows you to manually prepare the dwords and
have the set function solely manage the allocation and positioning for you. :)

crydev

File Attachnents

1) Capture.PNG downl oaded 630 tines

Page 2 of 2 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=getfile&id=5257
https://www.ultimatepp.org/forums/index.php

