
Subject: Re: Writing Bits object to disk
Posted by crydev on Sat, 06 May 2017 08:28:39 GMT
View Forum Message <> Reply to Message

Hi Mirek,

I worked out the test you suggested. The pipelined set function is not faster anymore. I can
understand that this is the case. The SSE2 vectorized set function now is around 30% faster:

// Non naive vector test :D
const int VectorBoolOrBitsetTestBitSetVectorizedNonNaive(Bits& buffer, const Vector<unsigned
char>& rand)
{
	unsigned char vec[32];
	const int count = rand.GetCount();
	for (int i = 0; i < count; i += sizeof(vec))
	{
		for (int j = 0; j < sizeof(vec); ++j)
		{
			vec[j] = rand[i + j] > 50 ? 0x80 : 0x0;
		}
		
		// Use the vectorized set method.
		buffer.VectorSetNonNaive(i, vec);
	}
	int alloc = 0;
	buffer.Raw(alloc);
	return alloc;
}

// The non naive vector set function, that actually implements only the vector
// setting, and not also the comparison of the input!
void Bits::VectorSetNonNaive(int i, const unsigned char vec[32])
{
	// Check whether i is within the bounds of the container.
	ASSERT(i >= 0 && alloc >= 0);

	// Get the DWORD index for the internal buffer.
	int q = i >> 5;
	
	// Do we need to expand the internal buffer first?
	if(q >= alloc)
		Expand(q);
	
	// Get the bit index of the next available DWORD.
	i &= 31;
	

Page 1 of 2 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=1540
https://www.ultimatepp.org/forums/index.php?t=rview&th=9854&goto=48011#msg_48011
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=48011
https://www.ultimatepp.org/forums/index.php

	// Create a bitmask with vector intrinsics.
	__m128i boolVecLow = _mm_load_si128((__m128i*)vec);
	__m128i boolVecHigh = _mm_load_si128((__m128i*)(vec + 16));
	const int bitMaskLow = _mm_movemask_epi8(boolVecLow);
	const int bitMaskHigh = _mm_movemask_epi8(boolVecHigh);
	
	// Set the resulting WORD.
	LowHighDword w;
	w.dw = bp[q];
	w.w1 = (short)bitMaskLow;
	w.w2 = (short)bitMaskHigh;
	bp[q] = w.dw;
}

However, I was thinking: if I use vectorized code, I should be allowed to vectorize everything,
including the comparison of the input values! I thought about my own use case (where I indeed
also have to perform the kind of comparison you suggested), and I realized that this comparison
could be vectorized. When I did so, the speeds of the SSE2 and AVX2 vectorized code examples
skyrocketed. I understand that you may think of the vectorized comparison as a 'proof-of-concept'
rather than a realistic implementation for U++, but I can actually utilize this implementation for my
memory scanner. Besides, it was fun to write code like this. I am surprised how easy it can be
done and how easily the game is played out. :)

The source code is of the other tests is once again located at my Bitbucket repository:
https://bitbucket.org/evolution536/cry-performance-test/src/
212c3b4f51a29efa0e70841e76cceb11bcaacf06/VectorBoolOrBitsetT
est.cpp?at=master&fileviewer=file-view-default

What do you think about a possible 'multi-set' implementation with an interface like:

void Set(int i, const Vector<bool>& vec, const int count);

Such function could contain a loop for a vector implementation, and the sequential Set function for
the remainder. Maybe also a set function that allows you to manually prepare the dwords and
have the set function solely manage the allocation and positioning for you. :)

crydev

File Attachments
1) Capture.PNG, downloaded 514 times

Page 2 of 2 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=getfile&id=5257
https://www.ultimatepp.org/forums/index.php

