Subject: Job package: A lightweight worker thread for non-blocking operations.
Posted by Oblivion on Sun, 10 Sep 2017 10:29:46 GMT

View Forum Message <> Reply to Message

Hello,

Below you will find a worker thread implementation which -hopefully- can simplify creating
non-blocking or asynchronous applications,

or allow you to easily port your applications to MT-era. | also supplied an example code
demonstrating its basic usage pattern.

Job package for Ultimate++

This template class implements a scope bound, single worker thread based on RAII principle.
It provides a return semantics for result gathering, functionally similar to promise/future
pattern (including void type specialization). Also it provides a convenient error management
and exception propagation mechanisms for worker threads, and it is compatible with U++
single-threaded mode.

Note that while Job is a general purpose multithreading tool, for high performance loop
parallelization scenarios CoWork would be a more suitable option. This class is mainly designed
to allow applications and libraries to gain an easily managable, optional non-blocking behavior
where high latency is expected such as network operations and file I/O, and a safe,
container-style access to the data processed by the worker threads is preferred.

Features and Highlights

- A safe way to gather results from worker threads.

- Simple and easy-to-use thread halting, and error reporting mechanism.

- Exception propagation.

- External blocking is possible.

- Optional constant reference access to job results.

- Compatible with U++ single-threaded environment.

- All Job instances are scope bound and will forced to finish job when they get out of scope.

Known Issues

- Currently none.

History

- 2017-10-07: Compatibility with U++ single-threaded mode is added.

Page 1 of 2 ---- Generated from U++ Forum


https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=447
https://www.ultimatepp.org/forums/index.php?t=rview&th=10118&goto=48749#msg_48749
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=48749
https://www.ultimatepp.org/forums/index.php

- 2017-10-01: Global variables moved into JobGlobal namespace in order to avoid multiple
definitions error. Accordingly, global functions are defined in Job.cpp.

- 2017-09-22: Exception propagation mechanism for job is properly added. From now on
worker threads will pass exceptions to their caller.
Void template specialization is re-implemented (without using future/promise).
Constant reference access operator is added. This is especially useful
where the data is a container with iterators (such as Vector or Array).

- 2017-09-19: std::exception class exceptions are handled, and treaated as errors.
(For the time being.)
void instantiation is now possible.
Jobs will notify their workers on shutdown.
Clean up & cosmetics...

- 2017-09-18: Clear() method is added. Worker id generator is using int64. Documentation
updated.

- 2017-09-17: Future/promise mechanism, and std template library code completely removed.
From now on Job has its own result gathering mechanism with zero copy/move
overhead.

- 2017-09-16: Job is redesigned. It is now a proper worker thread.

- 2017-09-10: Initial public beta version is released.

Hope you'll find it useful.

Best Regards,
Oblivion

File Attachnments

1) Job Package and Exanpl es. zi p, downl oaded 480 ti nes

Page 2 of 2 ---- Generated from U++ Forum


https://www.ultimatepp.org/forums/index.php?t=getfile&id=5412
https://www.ultimatepp.org/forums/index.php

