
Subject: Re: Job package: A lightweight multithreading tool, using promise/future
mechanism
Posted by Oblivion on Sun, 10 Sep 2017 17:08:28 GMT
View Forum Message <> Reply to Message

And below is where CoWork starts to outperform Job (As you pointed out, because of the
additional copying involved, I guess.):

I changed the code to see other options:

{
		CoWork jobs;
		Vector<String> results;
		TIMING("CoWork");
		jobs & [=, &results] {
			Vector<String> s;
			for(int i = 0; i < 50000; i++)
				 s.Add() = GetDivisors();
				CoWork::FinLock();
				results = pick(s);
		};
		jobs.Finish();
	}
	
	{
		Job<Vector<String>> job;
		TIMING("Job");
		job.Start([=]{
			Vector<String> s;
			for(int i = 0; i < 50000; i++)
				s.Add() = GetDivisors();
			return pick(s);
		});
		job.Finish();
		auto s = job.GetResult();
	}

TIMING Job : 1.42 s - 1.42 s (1.42 s / 1), min: 1.42 s , max: 1.42 s , nesting: 1 - 1
TIMING CoWork : 1.39 s - 1.39 s (1.39 s / 1), min: 1.39 s , max: 1.39 s , nesting: 1 - 1

Job is not an alternative to CoWork, but it's not a bad tool either. It does simplify writing high
performance MT code in a convenient way, thanks to U++.

Page 1 of 2 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=447
https://www.ultimatepp.org/forums/index.php?t=rview&th=10118&goto=48754#msg_48754
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=48754
https://www.ultimatepp.org/forums/index.php

It is suitable for such asynchronous operations mainly where a high latency is expected
(IO/sockets, etc.) and where the code needs to be easily managable (errors, and results should
be easily and immediately dealt with.)

Best regards,
Oblivion

Page 2 of 2 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

