
Subject: RE: Job package: A scope-bound worker thread for non-blocking
operations.
Posted by Oblivion on Sun, 17 Sep 2017 21:20:44 GMT
View Forum Message <> Reply to Message

Hello Mirek (and all U++ community),

After your review and criticism of Job class. I went back to design board and come up with a new
version, mostly re-written.
I updated the description and the package in the first post, as usual, but allow me to copy/paste
it's description here:

This package contains a lightweight and easy-to-use multithreading tool for U++ framework: Job.
Job template class implements a scope bound, single worker thread based on RAII principle.
It provides a return semantics for result gathering functionally similar to promise/future
pattern but with three major differences:

1) future/promise pair requires at least moving of the resulted data, which can be
 relatively expensive depending on the object type. On the other hand, Job acts as a simple
 container and uses a reference based result gathering method. This makes it possible to
 reduce move/copy overhead involved (nearly down to zero).

2) Job does not allow the T to be of plain void type (of course, void pointer is allowed).

3) Trying to access the resulting data while it is still invalid will not throw.
 Resources are allocated during construction (including the job data).

Note that for higher performance loop parallelization scenarios, CoWork would be a more
suitable option. This class is mainly designed to allow the applications and libraries to gain
an easily managable, optional non-blocking behaviour where high latency is expected (Such as
network operations and file I/O), and a safe "referential access" to the objects processed
by the worker threads is preferred.

- It is now a proper single worker thread. (performance gain, and memory reduction is visible.) By
design Job has no work scheduling (it is not meant to be a queue, not directly at least.)

- It is re-designed around the RAII principle: A scope-bound single worker thread that only gets
destroyed when it is out-of-its scope.

- Most importantly, thanks to your criticisim, I ditched the future/promise mechanism completely, in
favour of "Upp-native" way: Job instance are from now on basically simple data containers with
referential acces to their data (result). Yet I've kept the alternative return semantics. It is really
useful.

Granted, none of these are impossible to implement with CoWork or Thread. AFAIK CoWork is
scope bound too. But Job's purpose is different. Although it can be used as a general

Page 1 of 3 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=447
https://www.ultimatepp.org/forums/index.php?t=rview&th=10118&goto=48780#msg_48780
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=48780
https://www.ultimatepp.org/forums/index.php

parallelization tool, it is really meant to simplify writing non-blocking applications, or porting
exisiting ones to them, providing a simple yet convenient interface.

For example, with this new design it took around 2 hours for me to port my own FTP class fully
into MT environment, using a simple switch (Ftp::Blocking(false)) (News: Upcoming version (2.0)
will support MT internally.).
Again, I've begun porting (an experiment for now) the SSH package to MT using Job, and it solves
nearly every problem that I ran against wrapping SSH (non-blocking), and also both source code
and interface is reduced drastically. It is very clean now. (all those Startxxx() and xxx() method
pairs are gone, there are now only xxx ones. E.g. Ssh:Connect()) You can see this uniform
programming/porting pattern emerging int the new SocketClients example I provided:

class Client : public Job<String> {
public:
	Client&	Blocking(bool b = true)	{ blocking = b; return *this; }
	String	Request(const String& host, int port);
	
private:
	String	Run(Event<>&& cmd);
	bool	blocking = true;
};

String Client::Run(Event<>&& cmd)
{
	Start(pick(cmd));
	if(blocking) Finish();
	return blocking && !IsError() ? GetResult() : GetErrorDesc();
}

String Client::Request(const String& host, int port)
{
	auto cmd = [=]{
		TcpSocket	socket;
		auto& output = Job<String>::Data(); // This method allows referential access to the data of
respective job.
		output = Format("Client #%d: ", GetWorkerId());
		
		INTERLOCKED {	Cout() << output << "Starting...\n"; }
		
		if(socket.Timeout(10000).Connect(host, port))
			output.Cat(socket.GetLine());
		if(socket.IsError())
			throw JobError(socket.GetError(), socket.GetErrorDesc());
	};
	return Run(cmd);
}

Page 2 of 3 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

CONSOLE_APP_MAIN
{
 //.....

 // Requesting in a simple, blocking way.
	{
		Cout() << "----- Processing individual blocking requests...\n";
		Cout() << c1.Request(host1, 21) << '\n';
		Cout() << c2.Request(host2, 21)	<< '\n';
	}
	
	// Reuse workers and make requests in a simple, non-blocking way.
	{
		Cout() << "----- Processing individual non-blocking requests...\n";
		// We can "clear" the data (String):
		c1.GetResult().Clear();
		c2.GetResult().Clear();

		c1.Blocking(false).Request(host1, 21);
		c2.Blocking(false).Request(host2, 21);

		while(!c1.IsFinished() || !c2.IsFinished())
			;
		if(c1.IsError()) Cerr() << c1.GetErrorDesc() << '\n';
		else Cout() << ~c1 << '\n';
		
		if(c2.IsError()) Cerr() << c2.GetErrorDesc() << '\n';
		else Cout() << ~c2 << '\n';

	}

 //....

}

Please also take a look into the full code.

As always, review, bug reports, criticism, feedback are greatly appreciated.

Best regards,
Oblivion

Page 3 of 3 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

