
Subject: Re: RE: Job package: A scope-bound worker thread for non-blocking
operations.
Posted by Oblivion on Tue, 19 Sep 2017 06:12:31 GMT
View Forum Message <> Reply to Message

Hello Mirek,

(Thank you for your comments. I deeply appreciate it.)

I was curious about if the new design of Job class will pay off, whether it is also a resonable
general paralellization tool, and did some benchmarking with the Divisors example.

I assumed Job and CoWork to be functionally and effectively identical in this example (In the
sense that, regardless of their internals, they are both doing the same thing: Calculating divisiors
for the number 1000, 10.000 times in available worker threads, then printing the results to the
screen.)

I simply changed the jobs loop to take advantage of new return semantics (I don't know if CoWork
can be put into a similar loop, so I am taking this with a grain of salt):
The loop for the job is simply a very crude slot manager for 8 Job workers. (Tested on AMD FX
6100, six core processor.)

	Array<Job<String>> jobs;
	jobs.SetCount(CPU_Cores() + 2);

	CoWork cowork;
//	cowork.SetPoolSize(CPU_Cores() + 2);
	
	Vector<String> results;
	DUMP(CPU_Cores());
	{

		TIMING("CoWork -- With stdout output");
		for(int i = 0; i < 10000; i++)
			cowork & [=, &results] { String h = GetDivisors(); CoWork::FinLock(); results.At(i) = h; };
		cowork.Finish();
		// Stdout output section.
		for(auto& r : results)
			Cout() << r << '\n';

	}
	{
		TIMING("Job -- With stdout output");

		int i = 0;
		while(i < 10000) {

Page 1 of 3 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=447
https://www.ultimatepp.org/forums/index.php?t=rview&th=10118&goto=48788#msg_48788
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=48788
https://www.ultimatepp.org/forums/index.php


			for(auto& job : jobs) {
				if(!job.IsFinished()) {
					continue;
				}
				job & [=]{ Job<String>::Data() = GetDivisors(); };
				if(!(~job).IsEmpty()) {
					Cout() << ~job << '\n';
					if(++i == 10000) break;
				}
			}
	
		}
	}

Results (consistent):

For 10000 computiation.

CPU_Cores() = 6
TIMING Job -- With stdout output: 370.00 ms - 370.00 ms (370.00 ms / 1 ), min: 370.00 ms, max:
370.00 ms, nesting: 1 - 1
TIMING CoWork -- With stdout output: 461.00 ms - 461.00 ms (461.00 ms / 1 ), min: 461.00 ms,
max: 461.00 ms, nesting: 1 - 1

CPU_Cores() = 6
TIMING Job -- Without stdout output: 228.00 ms - 228.00 ms (228.00 ms / 1 ), min: 228.00 ms,
max: 228.00 ms, nesting: 1 - 1
TIMING CoWork -- Without stdout output: 234.00 ms - 234.00 ms (234.00 ms / 1 ), min: 234.00
ms, max: 234.00 ms, nesting: 1 - 1

for 1000 compuitation.

CPU_Cores() = 6
TIMING Job -- With stdout output: 34.00 ms - 34.00 ms (34.00 ms / 1 ), min: 34.00 ms, max: 34.00
ms, nesting: 1 - 1
TIMING CoWork -- With stdout output: 53.00 ms - 53.00 ms (53.00 ms / 1 ), min: 53.00 ms, max:
53.00 ms, nesting: 1 - 1

CPU_Cores() = 6
TIMING Job -- Without stdout output: 24.00 ms - 24.00 ms (24.00 ms / 1 ), min: 24.00 ms, max:
24.00 ms, nesting: 1 - 1
TIMING CoWork -- Without stdout output: 31.00 ms - 31.00 ms (31.00 ms / 1 ), min: 31.00 ms,
max: 31.00 ms, nesting: 1 - 1

Page 2 of 3 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php


What do you think?

Best regards,
Oblivion

Page 3 of 3 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

