
Subject: Re: Request: please make Range classes compatible with Vector!
Posted by mirek on Thu, 12 Oct 2017 12:32:36 GMT
View Forum Message <> Reply to Message

piotr5 wrote on Thu, 12 October 2017 07:20well, range isn't really moveable, actually it inherits
moveable from the iterator it contains. however, I use it as Key to a map with iterator being just a
pointer to some const characters. for that purpose I had to use NTL_MOVEABLE, create a
"GetHashValue(const SubRangeClass&){return xxHash(...);}" and a specialization of
SubRangeClass<const char*> containing an empty constructor.

the latter I see as a bug, SubRangeClass IMHO should have a constructor taking no arguments
marked as protected, useable for its Vector friend. i.e. 2 changes: add containers making use of
Create() or Add() or whatever to a list of friends for range classes, maybe put these additions into
a friend-macro for others to use in their classes too. and then add SubRangeClass() constructor
as a protected (or private) member.

The Range classes are a great addition to Upp! finally I can work with substrings without having to
create yet another instance of the same text over and over again. however, in my observation
substrings I actually need mostly for Keys in a Map, for example in a command-parser taking long
commands or short ones which are a substring of the long commands. another use-case is
indexing stuff for faster substring-search. it improves cache usage, often less memory is used too.
if I had to enclose them in Value objects for storage, guess the overhead would kill some of these
advantages...

You got me scared...:)

I am afraid your usage goes far beyound the original intent, which is basically about having unified
interface for algorithms, so that I can have the same simple algorithm to sort a vector or just slice
of it.

The problem with range is that it is temporary view which exists only as long as its parent "range"
(ultimately, a container) exists. I am afraid that using Range as anything else might be quite error
prone.

A comment about substrings. Consider that you are fetching keys from some long text and storing
to Map somehow. You will store the slice in something like

struct SubString {
 const char *begin;
 const char *end;
};

It might sound like saving the memory, but often is not, because sizeof(SubString) == 16, which is
the same size as consumed by String for up to 14 characters. Worse, comparing small SubStrings
is order of magnitude slower than comparing regular small Strings.

Page 1 of 2 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=3
https://www.ultimatepp.org/forums/index.php?t=rview&th=10142&goto=48851#msg_48851
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=48851
https://www.ultimatepp.org/forums/index.php

So the above optimisation would work only if you have "long" keys.

Mirek

Page 2 of 2 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

