
Subject: Re: Request: please make Range classes compatible with Vector!
Posted by piotr5 on Thu, 12 Oct 2017 21:22:36 GMT
View Forum Message <> Reply to Message

thanks for the reminder I'm on a 64-bit system now with pointers taking up 8 bytes each. you're
absolutely right it requires some caution, people aren't used to the idea of something like pointers
or iterators losing their meaning when the container changes. I too experienced problems in past
that got solved by switching from Vector to Array because the data I used wasn't truely
moveable... :lol:

I admire the range classes because I tried to implement them myself for a file-management
program: the string stores the full pathname, while the range alike class just stores the filename
and maybe the directory-name they're in. so for example I'd have a directory with files named
[0-9]*.pdf each representing pages scanned, and the directory-name contains the whole book-title
and author-name and isbn and so on. the two together are definitely longer than 16 characters,
and storing them in some Range class could help in calling some algorithms on them. another
use-case I found was to store a 2D object in a Vector<SubRangeClass>, with each element
pointing at a row of an image, thereby describing an outline of a (non-rectangular) area selected
by the user or an algorithm. again such ranges are definitely not really small, and even if some
more compressed method for storing that info would exist, it's still quicker to alter the colours of
some container of other container-alike objects than having to navigate in the actual image. (I hate
drawing programs which insist that no image can ever be larger than 4GB, what am I supposed to
use for high-resolution scans?...)

I agree that the speed-up isn't always noticable. if I'd store a substring in a range-alike class, the
cpu-cache must load another 16 bytes in addition to the actual string, quite some waste when the
same string is referred to from many places. so even a 32 byte string would see a speed-up in
search compared to the SubString class -- unless string and SubString are stored within the same
cache-line. but I must emphasize that strings aren't the only use-case that come into mind. I've
used various objects as Keys into a Map object. floating-point numbers (or big rational numbers)
for example take up quite some space, an std::array of them might determine some coordinates in
an n-dimensional space, and I could take a look at a smaller sub-space by selecting a
SubRangeClass or ViewRangeClass as a key mapping to further information of that particular
place. the idea is, when working with the same vectors over and over again, in different
sub-spaces, it might save on cache-consumption if I avoid copying those values...

Page 1 of 1 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=32
https://www.ultimatepp.org/forums/index.php?t=rview&th=10142&goto=48853#msg_48853
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=48853
https://www.ultimatepp.org/forums/index.php

