Subject: Kqueue/epoll based interface for TcpSocket and WebSocket
Posted by shutalker on Fri, 06 Apr 2018 13:39:53 GMT

View Forum Message <> Reply to Message

Hello all!

I'm working on the implementation of a cross-platform interface that encapsulates event
multiplexing interfaces (kqueue/epoll/select). This interface is planned to be used with TcpSockets
and WebSockets instead of SocketWaitEvent. The reason why | need this interface is that the
select interface does not scale well on large number of sockets, therefore it's useless in
developing of high-load server that must keep a lot of tcp connections.

It would be great if that kind of interface become native for UPP. It must be compatible with
existing code base, so there is no necessity in modification of existing users' projects. At the same
time it can be included and used in user's code like SocketWaitEvent.

At the moment I'm implementing the following interface:

template <class T_SOCKET>

class SocketEventQueue: NoCopy

{

public:

SocketEventQueue(): errorCode(NOERR) { InitEventQueue(); }
~SocketEventQueue();

bool ClearEventQueue();
QueueHandler GetQueueHandler() const;

bool IsError() const { return errorCode !'= NOERR; }
ErrorCode GetErrorCode();

bool SubscribeSocketRead(const T_SOCKET &sock);
bool SubscribeSocketWrite(const T_SOCKET &sock);
bool SubscribeSocketReadWrite(const T_SOCKET &sock);

bool DisableSocketRead(const T_SOCKET &sock);
bool DisableSocketWrite(const T_SOCKET &sock);
bool DisableSocketReadWrite(const T_SOCKET &sock);

bool RemoveSocket(const T_SOCKET &sock);

bool IsSocketSubscribedRead(const T_SOCKET &sock) const { return IsSockeSubscribed(sock,
WAIT_READ); }

bool IsSocketSubscribedWrite(const T_SOCKET &sock) const { return IsSockeSubscribed(sock,
WAIT_WRITE); }

bool IsSocketDisabledRead(const T_SOCKET &sock) const { return IsSockeDisabled(sock,
WAIT_READ); }

bool IsSocketDisabledWrite(const T_SOCKET &sock) const { return IsSockeDisabled(sock,
WAIT_WRITE); }

Page 1 of 5 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=34338
https://www.ultimatepp.org/forums/index.php?t=rview&th=10317&goto=49698#msg_49698
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=49698
https://www.ultimatepp.org/forums/index.php

Vector<SocketEvent<T_SOCKET>> Wait(int timeout);
I3

SocketEvent is a helper class:

template <typename T_SOCKET>

class SocketEvent: Moveable<SocketEvent<T_SOCKET>>

{

public:

SocketEvent(T_SOCKET *sock=nullptr, EventFlag events=0)
: socket(sock)

, triggeredEvents(events)

{}

T_SOCKET *GetSocket() const { return socket; }

bool IsTriggeredRead() const { return triggeredEvents & WAIT_READ; }
bool IsTriggeredWrite() const { return triggeredEvents & WAIT_WRITE; }
bool IsTriggeredException() const { return triggeredEvents & WAIT_IS_EXCEPTION; }

void SetTriggeredRead(bool triggerState=true) { SetTrigger(triggerState, WAIT_READ); }
void SetTriggeredWrite(bool triggerState=true) { SetTrigger(triggerState, WAIT_WRITE); }
void SetTriggeredException(bool triggerState=true) { SetTrigger(triggerState,
WAIT_IS_EXCEPTION); }

private:
T_SOCKET *socket;
EventFlag triggeredEvents;

void SetTrigger(bool triggerState, EventFlag event)

{
if('triggerState)
{
triggeredEvents &= ~event;
return;
}
triggeredEvents |= event;
}
3

How do you like the idea?

There are two problems.

Page 2 of 5 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

The first problem is related to the current implementation of TcpSocket::RawWait(...). It uses
select(...) system call for determining possibility of reading/writing data or exceptional state of
socket. As far as | can understand, it means that server with large nubmer of sockets will work
slowly anyway. | patched TcpSocket::RawWait(...) for BSD platform on my local machine (see
below) before | started to implement the interface. Now | think that it's possible to use
SocketEventQueue in purpose of determining socket state instead of raw kqueue/epoll/select.
What do you think about this?

But there is another problem related to kqueue/epoll reaction on socket closing for both my patch
and SocketEventQueue. So here's the patch:

#ifdef PLATFORM_BSD

timespec *tvalp = NULL;

timespec tval,

if(lend_time != INT_MAX || WhenWait) {
to = max(to, 0);

tval.tv_sec =to / 1000;

tval.tv_nsec = 1000000 * (to % 1000);

tvalp = &tval,

if (to)

LLOG("RawWait timeout: " << to);
}

struct kevent eventrx, eventw;

struct kevent triggeredEvents[2];

int kq;

int eventFlags = EV_ADD | EV_ONESHOT;

if((kg = kqueue()) ==-1) // queue fd should be created once at the moment of socket opening
{ I/l and closed at the moment of socket closing
/I the same is for SocketEventQueue object

LLOG("kq = kqueue() returned -1");
SetSockError("wait");
return false;

}

if(flags & WAIT_READ)
{
EV_SET(&eventrx, socket, EVFILT _READ, eventFlags, 0, 0, NULL);
if(kevent(kg, &eventrx, 1, NULL, O, NULL) ==-1)
{
LLOG("kevent(kg, &eventrx, 1, NULL, O, NULL) returned -1");
SetSockError("wait");
close(kq);
return false;
}
}

Page 3 of 5 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

if(flags & WAIT_WRITE)
{
EV_SET(&eventw, socket, EVFILT_WRITE, eventFlags, 0, 0, NULL);
if(kevent(kg, &eventw, 1, NULL, O, NULL) ==-1)
{
LLOG("kevent(kq, &eventw, 1, NULL, O, NULL) returned -1");
SetSockError("wait");
close(kq);
return false;

}
}

int avail = kevent(kq, nullptr, O, triggeredEvents, 2, tvalp); // here is the problem if
socket
// works in blocking mode
/ or if timeout is too long
close(kq);
#else
/I default select implementation

Now let's imagine the situation:

TcpSocket server; // passes through TcpSocket::Listen()

void Server() // runs in several threads

{

static StaticMutex serverMutex;

while('Thread::IsShutdownThreads())
{

TcpSocket client;

bool acceptStatus;

{

Mutex::Lock __ (serverMutex);
/lacception is in blocking mode
acceptStatus = client.Accept(server); // calls TcpSocket::RawWait(...)

}

... [l connection handling

}
}

Page 4 of 5 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

void SignalHandler(int sig)

{

server.Close(); // Doesn't interrupt kevent system call in TcpSocket::RawWait(...)
Il close(socket) just makes kqueue to delete all events
Il associated with socket descriptor from it's kernel queue

Thread::ShutdownThreads();
}

So | can't normally terminate the server if | work with sockets in blocking mode.

Do you have any ideas how to interrupt kevent waiting loop?

I've tried to call shutdown(socket, SD_BOTH) for sockets that hadn't been passed through
TcpSocket::Listen(), and it works for me.

But | still can't deal with listening socket. Solution I've found is to use pipe-trick: read-end
descriptor attaches to kqueue/epoll, and write-end descriptor attaches to socket. When socket
closes, it writes some data in pipe with write-end descriptor.

But it means that socket must hold all queue write-end descriptors it was attached.

Could you help me with my problem?

Page 5 of 5 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

