Subject: Re: SSH package for U++
Posted by Oblivion on Wed, 08 Aug 2018 12:16:38 GMT

View Forum Message <> Reply to Message

Is there any real-world example where you would need this kind of nonblocking behaviour?

All'l can came up is some code that communicates with thousands of ssh servers at once. Looks
very unlikely to me....

| use it in an app and for a limited number of ssh channels (usually 10-20).

But frankly, that code remains before the the CoWork improvements and the arrival of
AsyncWork.

Nowadays in most such cases | use the async methods.

A short technical info:
- Ssh-based classes use a single callable target queue (FIFO), relying on deferred execution.
- Call to the queue elements are protected by a single static mutex (using INTERLOCKED).

- This allows easy maintenance but has a negative impact on the asynchronicity (it is not really
possible to achieve %100 asynchronous operations with the design of libssh2 anyway. Yet the
performance gains can be up to %30 in MT mode)

- Queue is populated by two interrelated methods: Cmd/ComplexCmd.
Cmd: Adds a single ananymous function to the callable target queue. In blocking mode it
executes the function immediately. In non-blocking mode it defers the execution.
ComplexCmd: Firs and foremos,t this method acts as a nest for other Cmds. and other nests.
This way it is possible to execute command chains in a consistent way (as if they are a single
CMD).

Certainly you are not comfortable with the current implementation. (Besides, | haven't tested it yet
bu as far as | can see your Get() implementation in svh won't work in non-blocking mode)

| have a new proposal: What if | get rid of queue mechanism and rewrite the package with only
blocking mode and optional async transfer methods(using AsyncWork, and naming them agein
SFtp::Asyncxxx)?

It won't take more than a week for me to come up with a working SSH package and the existing
public API wont change much (only the NB helpers will be gone).

Besides its SC will be lot cleaner.

In fact, | had a working prototype of this (was using my Job class) | ditched in favour of the
existing version.

Page 1 of 3 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=447
https://www.ultimatepp.org/forums/index.php?t=rview&th=10172&goto=50150#msg_50150
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=50150
https://www.ultimatepp.org/forums/index.php

As to your Get implementation:

int SFtp::Get(SFtpHandle handle, void *ptr_, int size0)
{
int done = 0; /I <- Can't be used in non-blocking mode.
char *ptr = (char *)ptr_;
Cmd(SFTP_START, [=, &done]() mutable {
int size = sizeO;
if(OpCode() == SFTP_START) {
if(FStat(HANDLE(handle), *sftp->finfo, false) <= 0) OpCode() = SFTP_GET,; // <- This is for
higher-level api. should be removed.
else return false;
}
while(size) {
int rc = libssh2_sftp_read(HANDLE(handle), ptr, min(size, ssh->chunk_size));
if(rc < 0) {
if("WouldBlock(rc))
SetError(rc);
return false;
}
else {
if(rc == 0)
break;
size -=rc;
done +=rc;
if(WhenProgress(done, size0))
SetError(-1, "Read aborted.");
ssh->start_time = msecs();
}

}
LLOG(Format("%d of %d bytes successfully read.”, done, size0));

return true;

D

return done;

}

| haven't tested this yet, but it shouldn't work in non-blocking mode. (because the execution will be
deferred (Get will immediately return) and there is a local variable ("done"))

Quote:
Are they documented to be the same?

Page 2 of 3 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

Nope, its my fault.
Best regards,
Oblivion.

Page 3 of 3 ---- Cenerated from U++ Forum

https://www.ultimatepp.org/forums/index.php

