
Subject: Re: Nested template question
Posted by Novo on Mon, 10 Jun 2019 18:42:55 GMT
View Forum Message <> Reply to Message

struct AZero {
	template <typename T>
	operator T() const {return 0;}
	
	template <typename T>
	operator std::complex<T>() const {return std::complex<T>(0, 0);}
};

double val = AZero();
std::complex<float> valc1 = AZero();
std::complex<double> valc2 = AZero();
Checked with Clang.

What you are trying to do is

template <typename T> 	T GetAZero() {return 0;}
template <typename T> std::complex<T>	GetAZero<class std::complex<T>>() {return
std::complex<T> (0, 0);}
It won't compile because this is partial function specialization, which is allowed only for classes.

The way I implemented this is also partial function specialization, but for some reason it compiles
:roll:

Page 1 of 1 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=269
https://www.ultimatepp.org/forums/index.php?t=rview&th=10697&goto=51868#msg_51868
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=51868
https://www.ultimatepp.org/forums/index.php

