Subject: Re: Architectural and C++/Upp questions
Posted by Klugier on Mon, 28 Sep 2020 20:08:53 GMT

View Forum Message <> Reply to Message

Hello Xemuth,

| am glad you ask :) | like threads like this!

1. You could create API similar to Unity. You will need two following classes:
- SceneManager (Context probably not very approrpiate name)
- Scene

In context of SceneManager (context) you could use String as in Unity to identify specific scene.
The next think | would change is the use of reference. | would opt for pointer, because right now
you can not detect errors in your API. Internally you could store it on heap and only in return
situation just & for pointer passing. So, the code would look like this:

Scene* SceneManager::CreateScene(const String& id); // In case of error nullptr is returned - you
could use other constructs here as well (optional or upp concepts - read Core tutorial for tips).
Fine to return Scene here.

bool SceneManager::RemoveScene(const String& id); // bool is fine for error handling

bool SceneManager::HasScene(const String& id); // nice addition to remove

Scene* GetScene(const String& id); // in context of error - nullptr is returned

class Service{
public:
Service(); // <- For one varialbe not need (I do not see the code, so | may not understand
Service(Service&& service); // <- Not need (break the rule of 5)
Service(const Service& service); // <- Not need (breaks the rule of 5)
virtual ~Service(); // <- fine not need for implementation - just mark it = default;

// Do you plan to support concrete message set then replacing message with enum
make sense here...

virtual Vector<Value> ReceiveMessage(const String& message,const Vector<Value>&
args = Vector<Value>());

Backing to static_cast proble. Why not use template method instead and do the cast here - it will
be hidden for the user:

auto* service =
ufeContext.GetService<Upp::RendererOpenGLService>("RendererOpenGLService"));

Page 1 of 3 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=1517
https://www.ultimatepp.org/forums/index.php?t=rview&th=11170&goto=54921#msg_54921
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=54921
https://www.ultimatepp.org/forums/index.php

/I Pointer for error handling - nullptr in case of error. | suggest using dynamic_cast here. However,
you can not distinguish error type here - whenever it fail on dynamic_cast or fail on finding service
name... You could add HasService method that will return bool...

Reference:
- https://en.cppreference.com/w/cpp/language/rule_of_three

3. Vector<Value> - seems like task for optional not vector. In c++17 std::optional should do the
job. In the world of U++ you could return One<Value>. For more information please read - Core
tutorial (3.11 One).

Anyway in the example you show - bool should be enough:

/I override - nice to add this and consider channing the name of the method to
OnMessageReceive
/l'in c++11 = Vector<Value>() could be simplify to {}
virtual bool OnMessageReceive(const String& message,const Vector<Value>& args = {})
override{
if(message.lsEqual("AddQueue") && args.GetCount() >= 3){
try{
AddDrawToQueue(args[0].Get<String>(),args[1].Get<String>(), args[2]. Get<String>());
return true;
}catch(Exc& exception){ // Don't like exceptions here :)
Cout() << exception << EOL;

}
}

return false;

Generally speaking | do not like exceptions in C++. | enjoy c++17 approach that allows to unpack
tuple in one line:

auto [service, error] =
ufeContext.GetService<Upp::RendererOpenGLService>("RendererOpenGLService"));
if (error) {

/I Log error... etc...

return;

}

/I Make further processing with service...

Page 2 of 3 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

This is exactly the same error handling available in golang. The difference is that it is the only

option there :) In your case simple *service should be enough. Alternatively you could use
exceptions...

Reference:
- https://en.cppreference.com/w/cpp/language/structured_bindin g

Klugier

Page 3 of 3 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

