
Subject: Re: Overriding Display methods too complicated due to high amount of
arguments
Posted by Klugier on Sat, 14 Nov 2020 19:29:18 GMT
View Forum Message <> Reply to Message

Hello Mirek,

I am happy we are on the same page. I didn't know that this additional parameters were added in
the past. Anyway the deprecation mechanism was introduced int c++ since c++14. So, even if the
API mistakes were done in the past it can be reversed. The common strategy is to do not remove
API immediately. Instead of that mark old method as deprecated and in the message specify that
it is deprecated and it will be remove after for example three releases (Optimally it should be
specify like 2022.1). This will give people time to migration and always generates warning, so they
will know that they need to fix something. Without this one created API would not be able to make
a change.

This is common strategy in software world to deal with old API decision that do not fit to current
times. Let's just take our favorite language c++ it removes auto_ptr in c++17. It means all code
that uses this kind of pointer will not compiler with c++17 standard. The migration is relatively
simply and they warn that it will happen in c++14. The same is true for example for Python, they
remove unnecessary API within 3 major releases.

Quote:You know, I feel like you are the only one complaining about this API decision and it even
looks like the only reason you do is that you have read some well meant rule somewhere and not
even read it in details.
I think I follow this rule for some time and I am quite sure that the outcomes are good. In context
of software maintainability and easy to use. However to prove legitimacy, a study would have to
take place. I think it will not happen soon, but if you ask people how many parameters they want
to use they will always answer that less is better.

Quote:What is said in the first link sounds very reasonable to me. Have you read it all?
Yes, I have read it. However, i think there is a catch here :)

To be clear my main reason in this discussion is to make U++ API the most pleasant to use as
possible. This is not about criticizing some past decisions. We are all here together and we would
like to help and make U++ even better.

Klugier

Page 1 of 1 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=1517
https://www.ultimatepp.org/forums/index.php?t=rview&th=11215&goto=55481#msg_55481
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=55481
https://www.ultimatepp.org/forums/index.php

