
Subject: Flatbuffers package
Posted by Xemuth on Tue, 15 Dec 2020 11:48:36 GMT
View Forum Message <> Reply to Message

Hello,

I had to work with Google Flatbuffers and for my test I have made a TCP/IP client with Upp (in
order to connect to server (which work with flatbuffer)).
That's why I'm sharing here my Flatbuffers package and a quick client/server exemple.

What is Flatbuffers ?

FlatBuffers is an efficient cross platform serialization library for C++, C#, C, Go, Java, Kotlin,
JavaScript, Lobster, Lua, TypeScript, PHP, Python, Rust and Swift. It was originally created at
Google for game development and other performance-critical applications.

How Flatbuffers work ?

FlatBuffers provide an executable (named flatc.exe)(present in bin folder of my package, Windows
only, I plan to add debian/linux executable too) capable of converting fbs file to header file
representing data. Let me show a simple example :

Command.fbs :

// My command fbs

namespace TcpIpServer;

table Command {
 id:int;
 name:string;

}

root_type Command;

In this simple fbs file we can quickly remarque a namespace, a table (wich can basicly be
interpreted as structure or object) and a root_type. This file describe layout of our data.
-The schema starts with a namespace declaration. This determines the corresponding
package/namespace for the generated code. In our example, we have the TcpIpServer
namespace
-The Command table is the main object in our FlatBuffer. This will be used as the template to
store all our defined command.
-The last part of the schema is the root_type. The root type declares what will be the root table for
the serialized data. In our case, the root type is our Command table

You can find a far more precise description of FBS file here : Flatbuffers tutorial

Page 1 of 3 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=34388
https://www.ultimatepp.org/forums/index.php?t=rview&th=11313&goto=55795#msg_55795
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=55795
https://www.ultimatepp.org/forums/index.php

By passing this fbs file to flatc.exe as follow:

~/flatc.exe --cpp command.fbs

it gonna generate an header file (in our case named command_generated.h) contening a huge
implementation of our data structure (you can find this file here if you are curious !)
this header file will be inserted in our project as follow :

#include <Core/Core.h>
#include "command_generated.h"

using namespace Upp;
...

Right now flatbuffers is inserted in our project and can be used to Serialize/Deserialize command
object. Lets quickly see how it's done :

//a simple Command struct
struct Command{
	public:
		int id;
		String name;
		
		Command(int _id, String _name){id = _id; name = _name;}
		
		String ToString()const{
			String toStr;
			toStr << "Id: " << id << ", Name: " << name << "\n";
			return toStr;
		}
};

struct CommandSerializer{
	public:
		CommandSerializer(const Command& cmd){
			flatbuffers::Offset<flatbuffers::String> str1 = builder.CreateString(cmd.name.ToStd()); //First, we
create a special flatbuffers object that handle string
			TcpIpServer::CommandBuilder commandBuilder(builder); //Then we create a commandBuilder
(a special object that will construct our Command (the fbs file))
			commandBuilder.add_id(cmd.id); //We define value of each parameters of our command
			commandBuilder.add_name(str1); //We define value of each parameters of our command
			flatbuffers::Offset<TcpIpServer::Command> freshCommand = commandBuilder.Finish(); //we
retrieve our command by telling our commandBuilder we are done with it
			builder.Finish(freshCommand); //we end the builder of our newly command (named
freshCommand)
		}

		int GetSize(){return builder.GetSize();} //Return a ptr to our serialized object

Page 2 of 3 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

		uint8_t* GetDatasPtr(){return builder.GetBufferPointer();} //Return size of our serialized object
		
	private:
		flatbuffers::FlatBufferBuilder builder; //Builder is used to create everything we want with
flatbuffers
};

Command CommandDeserializer(uint8_t* datas, int size){
	flatbuffers::Verifier verfier(datas,size); //Verifier is used to verify our buffer of data is a valid
command
	if(TcpIpServer::VerifyCommandBuffer(verfier)){
		const TcpIpServer::Command* serializedCmd = TcpIpServer::GetCommand(datas); //If our
buffer is valid then we retrieve a ptr to the command within this buffer
		return Command(serializedCmd->id(), String(serializedCmd->name()->c_str())); //then we use
our buffer to build our command
	}
	throw Exc("Invalide command");
}

the ptr to the binary serialized data can be used to sent data over the network for example. Lets
see in the next post a simple Client/Server flatbuffer exchange

File Attachments
1) Flatbuffers.7z, downloaded 324 times

Page 3 of 3 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=getfile&id=6297
https://www.ultimatepp.org/forums/index.php

