
Subject: Impressive improvement in stl::vector when dealing with raw memory.
Posted by Lance on Mon, 14 Nov 2022 00:48:14 GMT
View Forum Message <> Reply to Message

Roughly 2 years ago, Mirek wrote this article. Some of the facts, like the speed of NTL containers
versus standard library counterparts, which are well know to us, obviously surprised other
readers. In the comment section of the article, Mirek and Espen Harlinn had an in depth
discussion:

Here is a quote that kind of initiated the interesting discussion:
Quote:
OK ...

U++ appears to be an impressive piece of work, but:

You are making some remarkable claims with regard to the performance of your library, and how
you have achieved this alleged performance boost.

You claim that memcpy/memmove is faster than std::copy, while in my experience the
performance of memcpy/memmove is the same as for std::copy/std::copy_backward.

Your string class is supposed to be faster than std::string. While this may be true for some
operations, it is probably not true for the most important ones, and for situations where your
implementation is faster, you will probably get similar performance using std::string_view.

Statements like:
Quote:
it is still very useful and using memmove for this task easily results in 5 times speedup of the
operation.

implies that the standard library is really bad. If it were true, than that would be rather
embarrassing ...

I've made similar, if not so bold, claims in the past, but C++ and the standard library has evolved
to a point where I would be hesitant to do so again.

I am also not plagued by memory leaks since I am mostly using std::unique_ptr and
std::shared_ptr to manage memory resource ownership.

Best regards
Espen Harlinn

I reread the article a few weeks ago, and decided to do a short test. Guess what, I am surprised
by the test result. I want to share my findings with the community and please do similar test on
your own machine --- either to confirm or disprove my test.

I basically used the benchmarks/Vector package but tailored it to builtin types.

Page 1 of 5 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=11960&goto=59169#msg_59169
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=59169
https://www.ultimatepp.org/forums/index.php

#include <Core/Core.h>
#include <vector>

using namespace Upp;

const int N = 400000;
const int M = 30;
const size_t buffsize = 128;

struct Buff{
 Buff()=default;
 Buff(const Buff&)=default;
 Buff(Buff&&)=default;

 char buff[buffsize];
};

namespace Upp{
NTL_MOVEABLE(Buff);
}

void TestInt();
void TestIntInsert();
void TestCharBuffer();

CONSOLE_APP_MAIN
{
 TestCharBuffer();
// TestInt();
// TestIntInsert();
}

void TestCharBuffer()
{
 for(int i=0; i < M; ++i)
 {
 	{
 RTIMING("std::vector<Buff>::push_back");
	 std::vector<Buff> v;
	 for(int i = 0; i < N; i++){
	 Buff b;
		v.push_back(b);
	 }
	}
	
	{

Page 2 of 5 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

	 RTIMING("Upp::Vector<Buff>::push_back");
	 Upp::Vector<Buff> v;
	 for(int i = 0; i < N; i++){
		Buff b;
		v.Add(b);
	 }
	}

 }
}

void TestInt()
{
 for(int i=0; i < M; ++i)
 {
	{
	 RTIMING("std::vector<int>::push_back");
	 std::vector<int> v;
	 for(int i = 0; i < N; i++)
		v.push_back(i);
	}
	{
	 RTIMING("Upp::Vector<int>::push_back");
	 Upp::Vector<int> v;
	 for(int i = 0; i < N; i++)
		v.push_back(i);
	}

 }
}

void TestIntInsert()
{
 for(int i=0; i < M; ++i)
 {
	{
	 RTIMING("std::vector<int>::insert");
	 std::vector<int> v;
	 for(int i = 0; i < N; i++)
		v.insert(v.begin(), i);
	}
	{
	 RTIMING("Upp::Vector<int>::insert");
	 Upp::Vector<int> v;
	 for(int i = 0; i < N; i++)
		v.Insert(0, i);
	}
 }

Page 3 of 5 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

}

Some of the test results:

TIMING Upp::Vector<Buff>::push_back: 1.99 s - 66.33 ms (1.99 s / 30), min: 63.00 ms, max:
73.00 ms, nesting: 0 - 30
TIMING std::vector<Buff>::push_back: 1.23 s - 41.07 ms (1.23 s / 30), min: 39.00 ms, max:
47.00 ms, nesting: 0 - 30

The number fluctuate quite a lot, but mostly the result is in favour of std::vector (when handling
raw bytes).

BTW, testing insertion is very time consuming, considering start from small number for N and M,
then gradually increase. It appears std::vector excels when N are big.

My CPU:

Architecture: x86_64
 CPU op-mode(s): 32-bit, 64-bit
 Address sizes: 39 bits physical, 48 bits virtual
 Byte Order: Little Endian
CPU(s): 8
 On-line CPU(s) list: 0-7
Vendor ID: GenuineIntel
 Model name: Intel(R) Core(TM) i7-8650U CPU @ 1.90GHz
 CPU family: 6
 Model: 142
 Thread(s) per core: 2
 Core(s) per socket: 4
 Socket(s): 1
 Stepping: 10
 CPU max MHz: 4200.0000
 CPU min MHz: 400.0000
 BogoMIPS: 4199.88
 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36
clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall
 nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl
xtopology nonstop_tsc cpuid aperfmperf pni pclmulqdq
 dtes64 monitor ds_cpl vmx smx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid
sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer
 aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb
invpcid_single pti ssbd ibrs ibpb stibp tpr_shadow vnmi fle
 xpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid
mpx rdseed adx smap clflushopt intel_pt xsaveopt
 xsavec xgetbv1 xsaves dtherm ida arat pln pts hwp hwp_notify hwp_act_window
hwp_epp md_clear flush_l1d arch_capabilities

Page 4 of 5 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

Virtualization features:
 Virtualization: VT-x
Caches (sum of all):
 L1d: 128 KiB (4 instances)
 L1i: 128 KiB (4 instances)
 L2: 1 MiB (4 instances)
 L3: 8 MiB (1 instance)
NUMA:
 NUMA node(s): 1
 NUMA node0 CPU(s): 0-7
Vulnerabilities:
 Itlb multihit: KVM: Mitigation: VMX disabled
 L1tf: Mitigation; PTE Inversion; VMX conditional cache flushes, SMT vulnerable
 Mds: Mitigation; Clear CPU buffers; SMT vulnerable
 Meltdown: Mitigation; PTI
 Mmio stale data: Mitigation; Clear CPU buffers; SMT vulnerable
 Retbleed: Mitigation; IBRS
 Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl and seccomp
 Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization
 Spectre v2: Mitigation; IBRS, IBPB conditional, RSB filling, PBRSB-eIBRS Not affected
 Srbds: Mitigation; Microcode
 Tsx async abort: Mitigation; TSX disabled

I would appreciate if you can do the test and share your results.

BR,
Lance

Page 5 of 5 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

