
Subject: Re: 2022(?).2 beta
Posted by Lance on Mon, 19 Dec 2022 22:54:10 GMT
View Forum Message <> Reply to Message

mirek wrote on Mon, 19 December 2022 17:35Lance wrote on Mon, 19 December 2022
23:14mirek wrote on Mon, 19 December 2022 14:22Lance wrote on Mon, 19 December 2022
19:10And some of the viable options if multi-c++-version support is a necessity (as proposed by
Klugier and me):

1. [=] to [&] when necessary. Make local copies of variables that are originally captured by value
with undesired modification, and refer only to the copy in the lambda body. A fictitious example:

[&] does not help and the problem is not local copies.

This does not work:

struct MyApp : TopWindow {
 Button b;

 MyApp() {
 int j = 12;
 b << [&] { PromptOK(AsString(j)); };
 }
};

I see. Reference to local variables invalidated out of function body. So this option is eliminated.
We are left with only 2.

3. Disable warning and hope that it will be deprecated for really long time. I bet it will.

See, this whole thing is rather unfortunate. There are 3 options, none of them really good. 2 of
these require significant work and a chance of introducing new bugs....

1. Disable warnings option: almost effortless. but like I mentioned in a previous post, when you
eventually decide to move to c++20, everybody else need to move with you overnight, or
otherwise there will be the same problem of supporting pre- & post-c++20 world simultaneously. I
am fine with that but not sure if other people will like it.

2. Klugier's other proposal ([this, a,b,c]). Heavy work, chance of bugs.

3. My proposal. Majority work can be done in 20 minutes. Other examples or packages, etc can
be left until a bug is reported (mainly in the case old [=] doesn't involve a `this`, just change back
to [=], can be fixed without thinking). I don't expect other subtle bug be introduce because of this

Page 1 of 2 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php?t=usrinfo&id=339
https://www.ultimatepp.org/forums/index.php?t=rview&th=11972&goto=59390#msg_59390
https://www.ultimatepp.org/forums/index.php?t=post&reply_to=59390
https://www.ultimatepp.org/forums/index.php

approach. And it should settle down in a time span of months, but involves little work on
maintainers/users' part after the initial 20 minutes or so.

In a previous post, I have listed procedures I took. Replace in files, then compiler will tell the case
where original [=] doesn't involves `this`, in which cases we change them back to [=]. I fail to see
any chance a subtle bug will be introduced as they mean exactly same thing, just added
compliance to c++20.

Lance

PS: you probably understand my approach fully. but let me explain it once more.

Context:
we have around 120ish [=] lambda capture in u++ source tree, majority of which should be
changed to [=,this] from c++20 onwards. Unfortunately [=,this] is not valid pre-c++20. We want a
way to make both worlds happy.

Conditional Macro: one apparent approach is to use a macro that expands to [=] with std =
pre-c++20 and [=, this] when std>=c++20. If we do it properly, no bug will be introduced because
of this: they are functionally equivalent.

Now suppose we have such a macro named MY_MACRO, which will be expanded to = or =,this,
depending on c++ standard used.

Recommended Procedure
1. Do "Replace in Files" for all files under $UPPSRC, replace all occurences of [=] with
[MY_MARCO]

2. Open a less involving package to fix the cases where no `this` were captured originally. The
one I used is <examples/Color>. F7 to compile it, with -std=c++20, preferably in debug mode to
save time. There will be like 3-4 cases where we have wrongfully replaced [=] with [=,this], locate
them, change back to [=]. Now the bulk of jobs are done;

3. Open package `theide`, do the same thing as in step 2. We will encounter 2 other cases where
we have wrongfully made the replacement. Fix them, theide will compile fine;

4. We can do a buildall on the u++ src tree(I remember we have something like that), then we can
fix all such wrongful replacements at once. Or we can leave it until it's be compiled and reported
by users.

5. We have a clean uppsrc that's c++-version-smart on existing lambda captures.

Page 2 of 2 ---- Generated from U++ Forum

https://www.ultimatepp.org/forums/index.php

